Advertisement

Investigation of Electronic and Optical Properties of GaSbBi/GaAs Type-II Quantum Wells Using 14-Band k · p Hamiltonian

  • Indranil Mal
  • Asish Hazra
  • D. P. SamajdarEmail author
  • T. D. Das
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

In order to investigate the electronic and optical properties of GaSbBi/GaAs type-II quantum well (QW) system, the well-established 8-band k · p Hamiltonian has been extended to a 14-band matrix. Incorporated dilute Bi in GaSb perturbs the valence and conduction bands of the host material, which leads to a reduction in band gap by about 40 meV/%Bi and an increase in spin-orbit splitting (SO) energy by ~21 meV/%Bi. In case of bulk GaSb0.987Bi0.013, the anticrossing interaction between Bi resonant states and host atom reduces the bandgap (51 meV) and enhance the SO energy (27 meV) of GaSb. A compressive strain of 7.3% perceived in GaSbBi/GaAs QW leads to a substantial increment in the band gap and SO energy to 1.12 eV and 1.217 eV respectively. Better confinement of carriers have been achieved owing to suitable tuning of valence band (VB) and conduction band (CB) offsets, which indeed assist to achieve an optical gain as high as 70/m−1 near the 2.2 µm mid-infrared window for a Type-II QW system.

References

  1. 1.
    S.Y. Lin et al., Appl. Phys. Lett. 96, 123503 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, Appl. Phys. Lett. 82, 2706 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    A. Marent et al., Appl. Phys. Lett. 89, 072103 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hwang, A.J. Martin, J.M. Millunchick, J.D. Phillips, J. Appl. Phys. 111, 074514 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.Y. Lin et al., Appl. Phys. Lett. 96, 123503 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D.P. Samajdar, T.D. Das, S. Dhar, Mater. Sci. Semicond. Process. 40, 539 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Polak et al., J. Phys. D Appl. Phys. 47, 355107 (2014)Google Scholar
  9. 9.
    M.P. Polak, P. Scharoch, R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    D.P. Samajdar, S. Dhar, Superlattices Microstruct. 89, 112 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 109, 442 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Das, T.D. Das, S. Dhar, M. de la Mare, A. Krier, Infrared Phys. Technol. 55, 156 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S.K. Das, T.D. Das, S. Dhar, Semicond. Sci. Technol. 29, 015003 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T.S. Jones, M.J. Ashwin, T.D. Veal, J. Appl. Phys. 116, 043511 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M.K. Rajpalke et al., App. Phys. Lett. 103, 142106 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H. Zhao, R.A. Arif, N. Tansu, J. Appl. Phys. 104, 043104 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Arif, H. Zhao, Y.K. Ee, N. Tansu, IEEE J. Quantum Electron. 44, 573 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T.D. Das, D.P. Samajdar, M.K. Bhowal, S.C. Das, S. Dhar, Curr. Appl. Phys. 16, 1615 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 106, 20 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    G.L. Bir, G.E. Pikus, Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Indranil Mal
    • 2
  • Asish Hazra
    • 1
  • D. P. Samajdar
    • 2
    Email author
  • T. D. Das
    • 3
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyYupiaIndia
  2. 2.Department of Electronics and Communication EngineeringPDPM Indian Institute of Information Technology, Design and ManufacturingJabalpurIndia
  3. 3.Department of Basic and Applied Science, National Institute of TechnologyYupiaIndia

Personalised recommendations