Process Design for Fabrication of Multi-stack MEMS Capacitive Push-Pull Accelerometer Based on SOI Technology

  • Abha PanchalEmail author
  • Shankar Dutta
  • Ramjay Pal
  • Kapil Kumar Jain
  • D. K. Bhattacharya
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


The paper reports on process design for fabrication of a navigational grade ±30 g MEMS capacitive push-pull accelerometer based on SOI (Silicon-On-Insulator) technology using Pyrex Glass-Silicon-Pyrex Glass multi-stack. The accelerometer structure is fabricated by DWP (Dissolve Wafer Process) technique. The complete fabrication process and released structure results after two wafers process (SOI and Pyrex-Glass) step are discussed in this paper. After the release of accelerometer structure, another patterned glass wafer would be anodically bonded on top. The scheme of three wafer assembly of push-pull accelerometer is also proposed.



The Authors like to thanks Director SSPL for his kind permission to publish this paper. We acknowledge STARC (SITAR), Bangalore for fabrication support.


  1. 1.
    R.K. Bhan, Shaveta, A. Panchal, Y. Parmar, C. Sharma, R. Pal, S. Dutta, Determination of multiple spring constants, gaps and pull down voltages in MEMS CRAB type microaccelerometer using near pull down capacitance voltage measurements. J. Sens. Trans. 192(9), 44–52 (2015)Google Scholar
  2. 2.
    Aziz, A., Sharaf, H., Serry, M., Sedky, S.: Novel architecture for inertial grade SOI MEMS inertial sensors, in IEEE International SOI Conference, pp. 1–2 (2009)Google Scholar
  3. 3.
    Elkaim, G.H., Foster, C.: Extension of a non-linear, two-step calibration methodology to include non-orthogonal sensor axes. J. IEEE Trans. Aerosp. Electron. Syst. 44 (2008)Google Scholar
  4. 4.
    M. Bao, Analysis and Design Principles of MEMS Devices (Elsevier, 2005)Google Scholar
  5. 5.
    S. Dutta, R. Pal, R. Chatterjee, Fabrication challenges for realization of wet etching based comb type capacitive microaccelerometer structure. J. Sens. Trans. 111, 18–24 (2009)Google Scholar
  6. 6.
    S. Tez, U. Aykutlu, M.M. Torunbalci, T. Akin, A bulk-micromachined three-axis capacitive MEMS accelerometer on a single die. J. Microelectromech. Syst. 24(5), 1264–1274 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Dutta, Shaveta, M. Imran, R. Pal, R.K. Bhan, Diffusion induced residual stress in comb-type microaccelerometer structure. J. Mater. Sci. Mater. Electron. 25, 3828–3832 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Tounsi, M. Kandpal, E. Ayechi, V.R. Rao, Behavior analysis of a 3-axis detection push-pull piezoresistive MEMS accelerometer, in 12th International Multi-Conference on Systems, Signals & Devices (Tunisia, 2015)Google Scholar
  9. 9.
    T. Tsuchiya, H. Funabashi, A z-axis differential capacitive SOI accelerometer with vertical comb electrodes. J. Sens. Actuators 116, 378–383 (2004)CrossRefGoogle Scholar
  10. 10.
    R.K. Bhan, Shaveta, M. Imran, R. Pal, S. Dutta, An improved analytical approach for estimation of misalignment error of sensing axis in MEMS accelerometers using simple tilt measurements. J. Sens. Trans. 189(6), 128–136 (2015)Google Scholar
  11. 11.
    A. Selvakumar, A high-sensitivity-axis capacitive silicon microaccelerometer with a torsional suspension. J. Micromech. Syst. 7(2), 192–200 (1998)CrossRefGoogle Scholar
  12. 12.
    S. Tez, T. Akin, Comparison of two alternative fabrication processes for a three-axis capacitive MEMS accelerometer. Proc. Eng. 47, 342–345 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abha Panchal
    • 1
    Email author
  • Shankar Dutta
    • 1
  • Ramjay Pal
    • 1
  • Kapil Kumar Jain
    • 1
  • D. K. Bhattacharya
    • 1
  1. 1.Solid State Physics LaboratoryTimarpurIndia

Personalised recommendations