Advertisement

Effect of Diameter and Doping on Electronic Band Structure of Single-Walled Carbon Nanotubes

  • Anup Kumar SharmaEmail author
  • Swati Sharma
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

Carbon nanotubes (CNTs) are basically graphene roll-up in cylindrical form that can have large value of length-to-diameter ratio. In this paper electrical property such as band-gap, density of states, and energy-dependent conductance of single walled carbon nanotubes is quantumly calculated using density functional theory (DFT). It can be seen that band-gap of different SWCNTs changes with the change in diameter. Density of states and energy dependent conductance is also calculated for different single walled CNTs. It is observed that armchair carbon nanotube band gap remain constant irrespective of the diametric size.

References

  1. 1.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow et al., Nano-aggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165–167 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Mark C. Hersam, Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3(7), 387–394 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    K.I. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. Part B Eng. 36(5), 468–477 (2005)CrossRefGoogle Scholar
  6. 6.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. B Eng. 57, 21–24 (2014)CrossRefGoogle Scholar
  8. 8.
    N.T. Hung, A.R. Nugraha, E.H. Hasdeo, M.S. Dresselhaus, R. Saito, Diameter dependence of thermoelectric power of semiconducting carbon nanotubes. Phys. Rev. B 92(16), 165426 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    R.N. Gontijo, G.A. Sáfar, A. Righi, R.M. Jain, M.S. Strano, C. Fantini, Quantifying (n, m) species in single-wall carbon nanotubes dispersions by combining Raman and optical absorption spectroscopies. Carbon 115, 681–687 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ECE DepartmentMNIT JaipurJaipurIndia
  2. 2.Department of ChemistryUniversity of RajasthanJaipurIndia

Personalised recommendations