Intra-articular Fractures: Philosophy of Minimally Invasive Fixation

  • Haluk Hayri ÖztekinEmail author
  • Hakan Boya


Intra-articular fractures that extend to the articular surface must be properly treated to prevent osteoarthritis. Anatomical reduction is the primary treatment aim, but the necessity for early postoperative motion is indispensable. For this purpose, surgeons seek to obtain effective anatomic reduction and stable internal fixation. Although focus has been placed on anatomic reduction and secure internal fixation, biological aspects of the fracture healing treatment should not be ignored.

Bony fragments with soft-tissue attachments should be preserved whenever possible. Innovative surgical techniques may need to be developed to better achieve these goals. This chapter will review biological and mechanical aspects of intra-articular fracture treatment and will discuss strategic technical treatment approaches.


Fractures Fracture treatment Intra-articular fractures Minimal invasive fixation 


  1. Apivatthakakul T, Arpornchayanon O (2002) Minimally invasive plate osteosynthesis (MIPO) combined with distraction osteogenesis in the treatment of bone defects: a new technique of bone transport: a report of two cases. Injury 33:460–465CrossRefGoogle Scholar
  2. Bhandari M, Shaughnessy S (2001) A minimally invasive percutaneous technique of intramedullary nail insertion in an animal model of fracture healing. Arch Orthop Trauma Surg 121:591–593CrossRefGoogle Scholar
  3. Brandt SE, Lefever S, Janzing HM, Broos PL, Pilot P, Houben BJ (2002) Percutaneous compression plating (PCCP) versus the dynamic hip screw for pertrochanteric hip fractures: preliminary results. Injury 33:413–418CrossRefGoogle Scholar
  4. Cole PA, Zlowodzki M, Kregor PJ (2003) Less invasive stabilization system (LISS) for fractures of the proximal tibia: indications, surgical technique and preliminary results of the UMC Clinical Trial. Injury 34:16–29CrossRefGoogle Scholar
  5. Duncan SFM, Weiland AJ (2001) Minimally invasive reduction and osteosynthesis of articular fractures of the distal radius. Injury 32:14–24CrossRefGoogle Scholar
  6. Egol KA (2004) Minimally invasive orthopaedic trauma surgery: a review of the latest techniques. Bull NYU Hosp Jt Dis 62:6–12Google Scholar
  7. Egol KA, Tejwani NC, Capla EL, Wolinsky PL, Koval KJ (2005) Staged management of high-energy proximal tibia fractures (OTA types 41): the results of a prospective, standardized protocol. J Orthop Trauma 19(7):448–455CrossRefGoogle Scholar
  8. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H (1997) Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury 28(Suppl 1):A7–A12CrossRefGoogle Scholar
  9. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H (1999) Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma 13:401–406CrossRefGoogle Scholar
  10. Garfin SR, Reilley MA (2002) Minimally invasive treatment of osteoporotic vertebral body compression fractures. Spine J 2:76–80CrossRefGoogle Scholar
  11. Gotfried Y (2002) Percutaneous compression plating for intertrochanteric hip fractures: treatment rationale. Orthop 25:647–652Google Scholar
  12. Kankate RK, Singh P, Elliott DS (2001) Percutaneous plating of the low energy unstable tibial plateau fractures: anew technique. Injury 32:229–232CrossRefGoogle Scholar
  13. Kregor PJ, Stannard J, Zlowodzki M, Cole PA, Alonso J (2001) Distal femoral fracture fixation utilizing the Less Invasive Stabilization System (L.I.S.S.): the technique and early results. Injury 32:32–47CrossRefGoogle Scholar
  14. Krettek C, Muller M, Miclau T (2001) Evolution of minimally invasive plate osteosynthesis (MIPO) in the femur. Injury 32:14–23CrossRefGoogle Scholar
  15. Krettek C, Schandelmaier P, Tscherne H (1997) New developments in stabilization of dia- and metaphyseal fractures of long tubular bones. Orthopade 26:408–421PubMedGoogle Scholar
  16. Mast J, Ganz R (1989) Reduction with distraction. In: Mast JR, Ganz R (eds) Planning and reduction technique in fracture surgery. Springer-Verlag, Berlin, pp 130–142CrossRefGoogle Scholar
  17. Perren SM (2002) Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Jt Surg Br 84:1093–1110CrossRefGoogle Scholar
  18. Remiger A, Engelhardt P (2006) Percutaneous iliosacral screw fixation of vertical unstable pelvic ring fractures. Swiss Surg 2:259–263Google Scholar
  19. Rhinelander FW (1974a) The normal circulation of bone and its response to surgical intervention. J Biomed Mater Res 8:87–90CrossRefGoogle Scholar
  20. Rhinelander FW (1974b) Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res 105:34–81CrossRefGoogle Scholar
  21. Ruedi TP, Sommer C, Leutenegger A (1998) New techniques in indirect reduction of long bone fractures. Clin Orthop Relat Res 347:27–34Google Scholar
  22. Russell GV, Smith DG (1999) Minimally invasive treatment of distal femur fractures: report of a technique. J Trauma 47:799–801CrossRefGoogle Scholar
  23. Schütz M, Müller M, Krettek C et al (2001) Minimally invasive fracture stabilization of distal femoral fractures with the LISS: a prospective multicenter study: results of a clinical study with special emphasis on difficult cases. Injury 32:48–54CrossRefGoogle Scholar
  24. Shuler TE, Boone DC, Gruen GS, Peitzman AB (1995) Percutaneous iliosacral screw fixation: early treatment for unstable posterior pelvic ring disruptions. J Trauma 38:453–458CrossRefGoogle Scholar
  25. Takeuchi R, Koshino T, Nakazawa A, Numazaki S, Sato R, Saito T (2002) Minimally invasive fixation for unstable two-part proximal humeral fractures: surgical techniques and clinical results using J-nails. J Orthop Trauma 16:403–408CrossRefGoogle Scholar
  26. Thakur AJ (2015) Minimal invasive osteosynthesis. In: Thakur AJ (ed) The elements of fracture fixation, 3rd edn. Elsevier, Gurgaon, pp 337–378Google Scholar
  27. Thompson RC Jr, Oegema TR Jr, Lewis JL, Wallace L (1991) Osteoarthrotic changes after acute transarticular load. an animal model. J Bone Joint Surg Am 73:990–1001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physiotherapy and RehabilitationBeykent University, School of Health SciencesİstanbulTurkey
  2. 2.Zübeyde Hanim Research and Training CenterBaşkent UniversityİzmirTurkey

Personalised recommendations