Advertisement

Neutral and Non-neutral Flux Tube Equilibria

  • Oliver Allanson
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we calculate exact 1D collisionless plasma equilibria for a continuum of flux tube models, for which the total magnetic field is made up of the ‘force-free’ Gold-Hoyle (GH) magnetic flux tube embedded in a uniform and anti-parallel background magnetic field. For a sufficiently weak background magnetic field, the axial component of the total magnetic field reverses at some finite radius. The presence of the background magnetic field means that the total system is not exactly force-free, but by reducing its magnitude, the departure from force-free can be made as small as desired. The DF for each species is a function of the three constants of motion; namely, the Hamiltonian and the canonical momenta in the axial and azimuthal directions. Poisson’s equation and Ampère’s law are solved exactly, and the solution allows either electrically neutral or non-neutral configurations, depending on the values of the bulk ion and electron flows. These equilibria have possible applications in various solar, space, and astrophysical contexts, as well as in the laboratory.

References

  1. B. Abraham-Shrauner, Exact, stationary wave solutions of the nonlinear Vlasov equation. Phys. Fluids 11, 1162–1167 (1968)Google Scholar
  2. B. Abraham-Shrauner, Force-free Jacobian equilibria for Vlasov-Maxwell plasmas. Phys. Plasmas 20(10), 102117 (2013)Google Scholar
  3. O. Allanson, T. Neukirch, S. Troscheit, F. Wilson, From onedimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82(3), 905820306 (2016)Google Scholar
  4. O. Allanson, T. Neukirch, F.Wilson, S. Troscheit, An exact collisionless equilibrium for the Force-Free Harris sheet with low plasma beta. Phys. Plasmas 22(10), 102116 (2015)Google Scholar
  5. O. Allanson, F. Wilson, T. Neukirch, Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: the Gold-Hoyle model in a background field. Phys. Plasmas 23(9), 092106 (2016)ADSCrossRefGoogle Scholar
  6. W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969)ADSCrossRefGoogle Scholar
  7. A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011)ADSCrossRefGoogle Scholar
  8. D.B. Batchelor, R.C. Davidson, Kinetic description of linear thetapinch equilibria. J. Plasma Phys. 14, 77–92 (1975)ADSCrossRefGoogle Scholar
  9. W.H. Bennett, Magnetically self-focussing streams. Phys. Rev. 45(12), 890–897 (1934)ADSCrossRefGoogle Scholar
  10. J. Birn, E. Priest, Reconnection of magnetic fields: magnetohydrodynamics and collisionless theory and observations. Cambridge University Press (2007)Google Scholar
  11. N.A. Bobrova, S.I. Syrovatskiǐ, Violent instability of one-dimensional forceless magnetic field in a rarefied plasma. Sov. J. Exp. Theor. Phys. Lett. 30, 535-+ (1979)Google Scholar
  12. N.A. Bobrova, S.V. Bulanov, J.I. Sakai, D. Sugiyama, Force-free equilibria and reconnection of the magnetic field lines in collisionless plasma configurations. Phys. Plasmas 8, 759–768 (2001)ADSCrossRefGoogle Scholar
  13. A.L. Borg, M.G.G.T. Taylor, J.P. Eastwood, Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail. Annales Geophysicae 30, 761–773 (2012)ADSCrossRefGoogle Scholar
  14. J.E. Borovsky, Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. (Space Phys.) 113, A08110 (2008)Google Scholar
  15. A. Bottino, A.G. Peeters, R. Hatzky, S. Jolliet, B.F. McMillan, T.M. Tran, L. Villard, Nonlinear low noise particle-in-cell simulations of electron temperature gradient driven turbulence. Phys. Plasmas 14(1), 010701 (2007)Google Scholar
  16. P. Carlqvist, Cosmic electric currents and the generalized Bennett relation. Astrophys. Space Sci. 144, 73–84 (1988)ADSGoogle Scholar
  17. P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976)ADSCrossRefGoogle Scholar
  18. S.W. Channon, M. Coppins, Z-pinch Vlasov-fluid equilibria including sheared-axial flow. J. Plasma Phys. 66, 337–347 (2001)ADSCrossRefGoogle Scholar
  19. S.W.H. Cowley, C.J. Owen, A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet. Space Sci. 37, 1461–1475 (1989)ADSCrossRefGoogle Scholar
  20. S.C. Cowley, B. Cowley, S.A. Henneberg, H.R. Wilson, Explosive instability and erupting flux tubes in a magnetized plasma. Proc. R. Soc. Lond. Ser. A 471, 20140913 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. R.C. Davidson. Physics of Nonneutral Plasmas (World Scientific Press, 2001)Google Scholar
  22. G.A. DiBraccio, J.A. Slavin, S.M. Imber, D.J. Gershman, J.M. Raines, C.M. Jackman, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, R.L. McNutt, S.C. Solomon, MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci. 115, 77–89 (2015)ADSCrossRefGoogle Scholar
  23. J.P. Eastwood, T.D. Phan, P.A. Cassak, D.J. Gershman, C. Haggerty, K. Malakit, M.A. Shay, R. Mistry, M. Øieroset, C.T. Russell, J.A. Slavin, M.R. Argall, L.A. Avanov, J.L. Burch, L.J. Chen, J.C. Dorelli, R.E. Ergun, B.L. Giles, Y. Khotyaintsev, B. Lavraud, P.A. Lindqvist, T.E. Moore, R. Nakamura, W. Paterson, C. Pollock, R.J. Strangeway, R.B. Torbert, S. Wang, Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophys. Res. Lett. 43, 4716–4724 (2016)ADSCrossRefGoogle Scholar
  24. A. El-Nadi, G. Hasselberg, A. Rogister, A p\(_\theta \), p\(_{z}\) dependent equilibrium solution for the cylindrical pinch. Phys. Lett. A 56, 297–298 (1976)ADSCrossRefGoogle Scholar
  25. D.F. Escande, What is a Reversed Field Pinch? (World Scientific, 2015), pp. 247–286. (Chap. 9)Google Scholar
  26. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6(4) (2009)Google Scholar
  27. R. Fitzpatrick, Plasma Physics: An Introduction (CRC Press, Taylor & Francis Group, 2014)Google Scholar
  28. J.P. Freidberg, Ideal Magnetohydrodynamics (Plenum Publishing Corportation, 1987)Google Scholar
  29. S.P. Gary, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series (Cambridge University Press, 2005)Google Scholar
  30. T. Gold, F. Hoyle, On the origin of solar flares. Mon. Not. R. Astrono. Soc. 120, 89 (1960)ADSCrossRefGoogle Scholar
  31. C.L. Grabbe, Trapped-electron solitary wave structures in a magnetized plasma. Phys. Plasmas 12(7), 072311 (2005)Google Scholar
  32. P. Gratreau, P. Giupponi, Vlasov equilibria of cylindrical relativistic electron beams of arbitrary high intensity. Phys. Fluids 20, 487–493 (1977)ADSCrossRefGoogle Scholar
  33. J.M. Greene, One-dimensional Vlasov-Maxwell equilibria. Phys. Fluids B 5, 1715–1722 (1993)ADSCrossRefGoogle Scholar
  34. C.J. Ham, S.C. Cowley, G. Brochard, H.R. Wilson, Nonlinear stability and saturation of ballooning modes in tokamaks\(^{*}\)”. Phys. Rev. Lett. 116(23), 235001 (2016)Google Scholar
  35. D.A. Hammer, N. Rostoker, Propagation of high current relativistic electron beams. Phys. Fluids 13, 1831–1850 (1970)ADSCrossRefGoogle Scholar
  36. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)CrossRefGoogle Scholar
  37. M.G. Harrison, T. Neukirch, One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Rev. Lett. 102(13), pp. 135003-+ (2009a)Google Scholar
  38. M.G. Harrison, T. Neukirch, Some remarks on one-dimensional forcefree Vlasov-Maxwell equilibria. Phys. Plasmas 16(2), 022106-+ (2009b)Google Scholar
  39. A.W. Hood, P.K. Browning, R.A.M. van der Linden, Coronal heating by magnetic reconnection in loops with zero net current. Astron. Astrophys. 506, 913–925 (2009)ADSCrossRefGoogle Scholar
  40. A.W. Hood, P.J. Cargill, P.K. Browning, K.V. Tam, An MHD avalanche in a multi-threaded coronal loop. Astrophys. J. 817(5), 5 (2016)ADSCrossRefGoogle Scholar
  41. J.D. Huba, NRL PLASMA FORMULARY Supported by The Office of Naval Research (Naval Research Laboratory, Washington, DC, 2013), pp. 1–71Google Scholar
  42. K.K. Khurana, M.G. Kivelson, L.A. Frank, W.R. Paterson, Observations of magnetic flux ropes and associated currents in Earth’s magnetotail with the Galileo spacecraft. Geophys. Res. Lett. 22, 2087–2090 (1995)ADSCrossRefGoogle Scholar
  43. M.G. Kivelson, K.K. Khurana, Models of flux ropes embedded in a Harris neutral sheet: force-free solutions in low and high beta plasmas. J. Geophys. Res. 100, 23637–23646 (1995)ADSCrossRefGoogle Scholar
  44. D.Y. Kolotkov, I.Y. Vasko, V.M. Nakariakov, Kinetic model of forcefree current sheets with non-uniform temperature. Phys. Plasmas 22(11), 112902 (2015)Google Scholar
  45. N.N. Komarov, N.M. Fadeev, Plasma in a self-consistent magnetic field. Sov. Phys. JETP 14(2), 528–533 (1962)Google Scholar
  46. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics (Elsevier Science, 2013)Google Scholar
  47. U. Leonhardt, T. Philbin, Geometry and Light: The Science of Invisibility, Dover Books on Physics (Dover Publications, 2012)Google Scholar
  48. H. Li, G. Lapenta, J.M. Finn, S. Li, S.A. Colgate, Modeling the large-scale structures of astrophysical jets in the magnetically dominated limit. Astrophys. J. 643, 92–100 (2006)ADSCrossRefGoogle Scholar
  49. T. Magara, D.W. Longcope, Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys. J. 586, 630–649 (2003)ADSCrossRefGoogle Scholar
  50. S.M. Mahajan, Exact and almost exact solutions to the Vlasov-Maxwell system. Phys. Fluids B 1, 43–54 (1989)ADSMathSciNetCrossRefGoogle Scholar
  51. E. Marsch, Kinetic Physics of the Solar Corona and Solar Wind. Living Rev. Sol. Phys. 3(1) (2006). http://www.livingreviews.org/lrsp-2006-1
  52. G.E. Marsh, Force-Free Magnetic Fields: Solutions, Topology and Applications. (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  53. A.I. Morozov, L.S. Solov’ev, A kinetic examination of some equilibrium plasma configurations. Sov. Phys. JETP 13, 927–932 (1961)Google Scholar
  54. H.E. Mynick, W.M. Sharp, A.N. Kaufman, Realistic Vlasov slab equilibria with magnetic shear. Phys. Fluids 22, 1478–1484 (1979)ADSCrossRefGoogle Scholar
  55. T. Neukirch, F. Wilson, M.G. Harrison, A detailed investigation of the properties of a Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Plasmas 16(12), 122102 (2009)ADSCrossRefGoogle Scholar
  56. W.A. Newcomb, Hydromagnetic stability of a diffuse linear pinch. Ann. Phys. 10, 232–267 (1960)ADSCrossRefGoogle Scholar
  57. C.S. Ng, A. Bhattacharjee, Bernstein-Greene-Kruskal modes in a three- dimensional plasma. Phys. Rev. Lett. 95(24), 245004 (2005)Google Scholar
  58. C.S. Ng, A. Bhattacharjee, F. Skiff, Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: new results on old problems. Phys. Plasmas 13(5), 055903 (2006)Google Scholar
  59. R.B. Nicholson, Solution of the Vlasov equations for a plasma in an externally uniform magnetic field. Phys. Fluids 6, 1581–1586 (1963)ADSCrossRefGoogle Scholar
  60. D. Pfirsch, Mikroinstabilitäten vom Spiegeltyp in inhomogenen Plasmen. Zeitschrift Naturforschung Teil A 17, 861–870 (1962)ADSMATHGoogle Scholar
  61. D.H. Pontius Jr., R.A. Wolf, Transient flux tubes in the terrestrial magnetosphere. Geophys. Res. Lett. 17, 49–52 (1990)ADSCrossRefGoogle Scholar
  62. E. Priest, Magnetohydrodynamics of the Sun (2014)Google Scholar
  63. E.R. Priest, J.F. Heyvaerts, A.M. Title, A flux-tube tectonics model for solar coronal heating driven by the magnetic carpet. Astrophys. J. 576, 533–551 (2002)ADSCrossRefGoogle Scholar
  64. A.D. Rogava, S. Poedts, S.M. Mahajan, Shear-driven wave oscillations in astrophysical flux tubes. Astron. Astrophys. 354, 749–759 (2000)ADSGoogle Scholar
  65. L.I. Rudakov, A.L. Velikovich, J. Davis, J.W. Thornhill, J.L. Giuliani Jr., C. Deeney, Buoyant magnetic flux tubes enhance radiation in Z pinches. Phys. Rev. Lett. 84, 3326–3329 (2000)ADSCrossRefGoogle Scholar
  66. C.T. Russell, R.C. Elphic, Observation of magnetic flux ropes in the Venus ionosphere. Nature 279, 616–618 (1979)ADSCrossRefGoogle Scholar
  67. F. Santini, H. Tasso, Vlasov equation in orthogonal co-ordinates. 1970 Internal Report IC/70/49 (1970)Google Scholar
  68. T. Sato, M. Tanaka, T. Hayashi, T. Shimada, K. Watanabe, Formation of field twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere. Geophys. Res. Lett. 13, 801–804 (1986)ADSCrossRefGoogle Scholar
  69. K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, 2007)Google Scholar
  70. A. Sestero, Self-consistent description of a warm stationary plasma in a uniformly sheared magnetic field. Phys. Fluids 10, 193–197 (1967)ADSCrossRefGoogle Scholar
  71. J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. (Space Phys.) 108, 1015 (2003)Google Scholar
  72. E. Tassi, F. Pegoraro, G. Cicogna, Solutions and symmetries of forcefree magnetic fields. Phys. Plasmas 15(9), 092113-+ (2008)Google Scholar
  73. H. Tasso, G.N. Throumoulopoulos, FAST TRACK COMMUNICATION: On the Vlasov approach to tokamak equilibria with flow. J. Phys. A Math. Gen. 40, 631 (2007)ADSCrossRefGoogle Scholar
  74. H. Tasso, G. Throumoulopoulos, Tokamak-like Vlasov equilibria. Eur. Phys. J. D 68(175), 175 (2014)ADSCrossRefGoogle Scholar
  75. V.S. Titov, K. Galsgaard, T. Neukirch, Magnetic pinching of hyperbolic flux tubes I. Basic estimations. Astrophys. J. 582, 1172–1189 (2003)ADSCrossRefGoogle Scholar
  76. T. Török, B. Kliem, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043–1059 (2003)ADSCrossRefGoogle Scholar
  77. H.S. Uhm, R.C. Davidson, Kinetic equilibrium properties of relativistic non-neutral electron flow in a cylindrical diode with applied magnetic field. Phys. Rev. A 31, 2556–2569 (1985)ADSCrossRefGoogle Scholar
  78. A.A. Vinogradov, I.Y. Vasko, A.V. Artemyev, E.V. Yushkov, A.A. Petrukovich, L.M. Zelenyi, Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys. Plasmas 23(7), 072901 (2016)Google Scholar
  79. Y.-M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990)ADSCrossRefGoogle Scholar
  80. T. Wiegelmann, T. Sakurai, Solar Force-free Magnetic Fields. Living Rev. Sol. Phys. 9(5) (2012)Google Scholar
  81. F. Wilson, T. Neukirch, A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet. Phys. Plasmas 18(8), 082108 (2011)ADSCrossRefGoogle Scholar
  82. Y.Y. Yang, C. Shen, Y.C. Zhang, Z.J. Rong, X. Li, M. Dunlop, Y.H. Ma, Z.X. Liu, C.M. Carr, H. Rème, The force-free configuration of flux ropes in geomagnetotail: cluster observations. J. Geophys. Res. (Space Phys.) 119, 6327–6341 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations