One-Dimensional Asymmetric Current Sheets

  • Oliver AllansonEmail author
Part of the Springer Theses book series (Springer Theses)


The NASA MMS mission has very recently made in situ diffusion region measurements of asymmetric magnetic reconnection for the first time (Burch et al. 2016). In order to compare to the data obtained from kinetic-scale observations (e.g. see Burch and Phan 2016), it would be useful to have initial equilibrium conditions for PIC simulations that reproduce the physics of the dayside magnetopause current sheet as accurately as possible, i.e. self-consistent VM equilibria that model the magnetosheath-magnetosphere asymmetries in pressure and magnetic field strength. In this chapter, we present new ‘exact numerical’ (numerical solutions to equations for exact VM equilibria), and exact analytical equilibrium solutions of the VM system that are self-consistent with 1D and asymmetric Harris-type current sheets, with a constant guide field. The DFs can be represented as a combination of shifted Maxwellian DFs, are consistent with a magnetic field configuration with more freedom than the previously known exact solution (Alpers 1969), and have different bulk flow properties far from the sheet.


  1. O. Allanson, F. Wilson, T. Neukirch, Y.-H. Liu, J.D.B. Hodgson, Exact Vlasov-Maxwell equilibria for asymmetric current sheets. Geophys. Res. Lett. 44, 8685–8695 (2017)ADSCrossRefGoogle Scholar
  2. W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969)ADSCrossRefGoogle Scholar
  3. N. Aunai, G. Belmont, R. Smets, First demonstration of an asymmetric kinetic equilibrium for a thin current sheet. Phys. Plasmas 20(11), 110702 (2013a)Google Scholar
  4. N. Aunai, M. Hesse, S. Zenitani, M. Kuznetsova, C. Black, R. Evans, R. Smets, Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: coplanar and guide field configurations. Phys. Plasmas 20(2), 022902 (2013b)Google Scholar
  5. G. Belmont, N. Aunai, R. Smets, Kinetic equilibrium for an asymmetric tangential layer. Phys. Plasmas 19(2), 022108 (2012)ADSCrossRefGoogle Scholar
  6. J.L. Burch, R.B. Torbert, T.D. Phan, L.-J. Chen, T.E. Moore, R.E. Ergun, J.P. Eastwood, D.J. Gershman, P.A. Cassak, M.R. Argall, S. Wang, M. Hesse, C.J. Pollock, B.L. Giles, R. Nakamura, B.H. Mauk, S.A. Fuselier, C.T. Russell, R.J. Strangeway, J.F. Drake, M.A. Shay, Y.V. Khotyaintsev, P.-A. Lindqvist, G. Marklund, F.D. Wilder, D.T. Young, K. Torkar, J. Goldstein, J.C. Dorelli, L.A. Avanov, M. Oka, D.N. Baker, A.N. Jaynes, K.A. Goodrich, I.J. Cohen, D.L. Turner, J.F. Fennell, J.B. Blake, J. Clemmons, M. Goldman, D. Newman, S.M. Petrinec, K.J. Trattner, B. Lavraud, P.H. Reiff, W. Baumjohann, W. Magnes, M. Steller, W. Lewis, Y. Saito, V. Coffey, M. Chandler, Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016)Google Scholar
  7. J.L. Burch, T.D. Phan, Magnetic reconnection at the dayside magnetopause: advances with MMS. Geophys. Res. Lett. 43, 8327–8338 (2016)ADSCrossRefGoogle Scholar
  8. P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys. Plasmas 14(10), 102114 (2007)Google Scholar
  9. P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976)ADSCrossRefGoogle Scholar
  10. J. Dargent, N. Aunai, G. Belmont, N. Dorville, B. Lavraud, M. Hesse, Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection. J. Plasma Phys. 82(3), 905820305 (2016)Google Scholar
  11. R.C. Davidson, Physics of Nonneutral Plasmas (World Scientific Press, 2001)Google Scholar
  12. N. Dorville, G. Belmont, N. Aunai, J. Dargent, L. Rezeau, Asymmetric kinetic equilibria: generalization of the BAS model for rotating magnetic profile and non-zero electric field. Phys. Plasmas 22(9), 092904 (2015)Google Scholar
  13. J.T. Gosling, S. Eriksson, R.M. Skoug, D.J. McComas, R.J. Forsyth, Petschek-type reconnection exhausts in the solar wind well beyond 1 AU: ulysses. Astrophys. J. 644, 613–621 (2006)ADSCrossRefGoogle Scholar
  14. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier/Academic Press, Amsterdam, 2007), 1171 pagesGoogle Scholar
  15. M.A. Hapgood, Space physics coordinate transformations-a user guide. Planet. Space Sci. 40, 711–717 (1992)ADSCrossRefGoogle Scholar
  16. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)CrossRefGoogle Scholar
  17. M. Hesse, N. Aunai, S. Zenitani, M. Kuznetsova, J. Birn, Aspects of collisionless magnetic reconnection in asymmetric systems. Phys. Plasmas 20(6), 061210 (2013)ADSCrossRefGoogle Scholar
  18. M. Hesse, N. Aunai, D. Sibeck, J. Birn, On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014)ADSCrossRefGoogle Scholar
  19. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, 1975)Google Scholar
  20. J. Huang, Z.W. Ma, D. Li, Debye-length scaled structure of perpendicular electric field in collisionless magnetic reconnection. Geophys. Res. Lett. 35(10) (2008)Google Scholar
  21. B.B. Kadomtsev, Disruptive instability in Tokamaks. Sov. J. Plasma Phys. 1, 710–715 (1975)Google Scholar
  22. J.R. Kan, Equilibrium configurations of Vlasov plasmas carrying a current component along an external magnetic field. J. Plasma Phys. 7, 445–459 (1972)Google Scholar
  23. H. Karimabadi, V. Roytershteyn, W. Daughton, Y.-H. Liu, Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci. Rev. 178, 307–323 (2013)ADSCrossRefGoogle Scholar
  24. S. Kobayashi, B.N. Rogers, R. Numata, Gyrokinetic simulations of collisionless reconnection in turbulent non-uniform plasmas. Phys. Plasmas 21(4), 040704 (2014)Google Scholar
  25. C.M. Komar, R.L. Fermo, P.A. Cassak, Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations. J. Geophys. Res. (Space Phys.) 120, 276–294 (2015)ADSCrossRefGoogle Scholar
  26. M.M. Kuznetsova, M. Roth, Thresholds for magnetic percolation through the magnetopause current layer in asymmetrical magnetic fiels. J. Geophys. Res. 100, 155–174 (1995)ADSCrossRefGoogle Scholar
  27. L.C. Lee, J.R. Kan, A unified kinetic model of the tangential magnetopause structure. J. Geophys. Res. (Space Phys.) 84, 6417–6426 (1979)Google Scholar
  28. J. Lemaire, L.F. Burlaga, Diamagnetic boundary layers-a kinetic theory. Astrophys. Space Sci. 45, 303–325 (1976)ADSCrossRefGoogle Scholar
  29. M.G. Linton, Reconnection of nonidentical flux tubes. J. Geophys. Res. (Space Phys.) 111, A12S09 (2006)Google Scholar
  30. Y.-H. Liu, M. Hesse, Suppression of collisionless magnetic reconnection in asymmetric current sheets. Phys. Plasmas 23(6), 060704 (2016)Google Scholar
  31. Y.-H. Liu, M. Hesse, M. Kuznetsova, Orientation of X lines in asymmetric magnetic reconnection-mass ratio dependency. J. Geophys. Res. (Space Phys.) 120, 7331–7341 (2015)ADSCrossRefGoogle Scholar
  32. K. Malakit, M.A. Shay, P.A. Cassak, C. Bard, Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J. Geophys. Res. (Space Phys.) 115, A10223 (2010)Google Scholar
  33. N.A. Murphy, M.P. Miralles, C.L. Pope, J.C. Raymond, H.D. Winter, K.K. Reeves, D.B. Seaton, A.A. van Ballegooijen, J. Lin, Asymmetric magnetic reconnection in solar flare and coronal mass ejection current sheets. Astrophys. J. 751(56), 56 (2012)ADSCrossRefGoogle Scholar
  34. M. Øieroset, T.D. Phan, M. Fujimoto, Wind observations of asymmetric magnetic reconnection in the distant magnetotail. Geophys. Res. Lett. 31, L12801 (2004)ADSGoogle Scholar
  35. T.D. Phan, M.A. Shay, J.T. Gosling, M. Fujimoto, J.F. Drake, G. Paschmann, M. Oieroset, J.P. Eastwood, V. Angelopoulos, Electron bulk heating in magnetic reconnection at earth’s magnetopause: dependence on the inflow Alfvén speed and magnetic shear. Geophys. Res. Lett. 40, 4475–4480 (2013)ADSCrossRefGoogle Scholar
  36. P.L. Pritchett, Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. (Space Phys.) 113, A06210 (2008)Google Scholar
  37. M.J. Pueschel, P.W. Terry, D. Told, F. Jenko, Enhanced magnetic reconnection in the presence of pressure gradients. Phys. Plasmas 22(6), 062105 (2015)Google Scholar
  38. K.B. Quest, F.V. Coroniti, Tearing at the dayside magnetopause. J. Geophys. Res. 86, 3289–3298 (1981)ADSCrossRefGoogle Scholar
  39. M. Roth, J. de Keyser, M.M. Kuznetsova, Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317 (1996)ADSCrossRefGoogle Scholar
  40. V. Roytershteyn, W. Daughton, H. Karimabadi, F.S. Mozer, Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations. Phys. Rev. Lett. 108(18), 185001 (2012)Google Scholar
  41. K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, 2007)Google Scholar
  42. S. Servidio, W.H. Matthaeus, M.A. Shay, P.A. Cassak, P. Dmitruk, Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102(11), 115003 (2009)Google Scholar
  43. M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay. Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (Space Phys.) 108, 1218 (2003)Google Scholar
  44. L. Trenchi, M.F. Marcucci, R.C. Fear, The effect of diamagnetic drift on motion of the dayside magnetopause reconnection line. Geophys. Res. Lett. 42, 6129–6136 (2015)ADSCrossRefGoogle Scholar
  45. P.-R. Wang, C. Huang, Q.-M. Lu, R.-S. Wang, S. Wang, Numerical simulations of magnetic reconnection in an asymmetric current sheet. Chin. Phys. Lett. 30(12), 125202 (2013)Google Scholar
  46. K.B. Wolf, On self-reciprocal functions under a class of integral transforms. J. Math. Phys. 18(5), 1046–1051 (1977)ADSMathSciNetCrossRefGoogle Scholar
  47. L. Zakharov, B. Rogers, Two-fluid magnetohydrodynamic description of the internal kink mode in tokamaks. Phys. Fluids B 4, 3285–3301 (1992)ADSCrossRefGoogle Scholar
  48. C. Zhu, R. Liu, D. Alexander, X. Sun, R.T.J. McAteer, Complex flare dynamics initiated by a filament-filament interaction. Astrophys. J. 813(60), 60 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations