Advertisement

The Use of Hermite Polynomials for the Inverse Problem in One-Dimensional Vlasov-Maxwell Equilibria

  • Oliver Allanson
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the aim is to make a contribution to the theory of exact equilibrium solutions to the Vlasov-Maxwell system, in 1D Cartesian geometry. In particular, we consider a solution method for the inverse problem in collisionless equilibria, namely that of calculating a VM equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans’ theorem (Jeans 1915), the equilibrium DFs are expressed as functions of the constants of motion, in the form of a stationary Maxwellian multiplied by an unknown function of the two conserved canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence of the candidate solution when satisfied, and as a result the existence of velocity moments of all orders. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a non-negative DF for a sufficiently magnetised plasma. This argument is in fact proven for certain classes of DFs, and in the form of conjecture for others.

References

  1. I.G. Abel, G.G. Plunk, E. Wang, M. Barnes, S.C. Cowley, W. Dorland, A.A. Schekochihin, Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Reports Prog. Phys. 76(11), 116201 (2013)ADSCrossRefGoogle Scholar
  2. B. AbrahamspsShrauner, Exact, stationary wave solutions of the nonlinear vlasov equation. Phys. Fluids 11, 1162–1167 (1968). JuneADSCrossRefGoogle Scholar
  3. O. Allanson, T. Neukirch, S. Troscheit, F. Wilson, From onedimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82.3, p. 905820306 (2016)Google Scholar
  4. O. Allanson, T. Neukirch, F.Wilson, S. Troscheit, An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta. Phys. Plasmas 22.10, 102116 (2015)Google Scholar
  5. O. Allanson, S. Troscheit, T. Neukirch, On the inverse problem for Channell collisionless plasma equilibria. IMA J. Appl. Math., hxy026 (2018)Google Scholar
  6. W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969). DecADSCrossRefGoogle Scholar
  7. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 5th edn. (Harcourt/Academic Press, Burlington, MA, 2001)zbMATHGoogle Scholar
  8. R.G. Bartle, D.R. Sherbert, Introduction to real Analysis (JohnWiley & Sons Limited, Canada, 2000)zbMATHGoogle Scholar
  9. W.H. Bennett, Magnetically self-focussing streams. Phys. Rev. 45(12), 890–897 (1934)ADSCrossRefGoogle Scholar
  10. G.G. Bilodeau, TheWeierstrass transform and Hermite polynomials. Duke Math. J. 29(2), 293–308 (1962)MathSciNetCrossRefGoogle Scholar
  11. E. Camporeale, G.L. Delzanno, G. Lapenta, W. Daughton, New approach for the study of linear Vlasov stability of inhomogeneous systems. Phys. Plasmas 13.9, 092110, p. 092110 (2006)Google Scholar
  12. P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976). OctADSCrossRefGoogle Scholar
  13. Clement Mouhot and Cedric Villani, On Landau damping. Acta Math. 207(1), 29–201 (2011)MathSciNetCrossRefGoogle Scholar
  14. B. Coppi, G. Laval, R. Pellat, Dynamics of the geomagnetic Tail. Phys. Rev. Lett. 16, 1207–1210 (1966). JuneADSCrossRefGoogle Scholar
  15. W. Daughton, The unstable eigenmodes of a neutral sheet. Phys. Plasmas 6, 1329–1343 (1999). AprADSCrossRefGoogle Scholar
  16. J.F. Drake, Y.C. Lee, Kinetic theory of tearing instabilities. Phys. Fluids 20, 1341–1353 (1977). AugADSCrossRefGoogle Scholar
  17. A.S. Eddington, On a formula for correcting statistics for the effects of a known error of observation. Mon. Not. Royal Astron. Soc. 73, 359–360 (1913). MarADSCrossRefGoogle Scholar
  18. L.C. Evans, Partial differential equations. Second. Vol. 19. Graduate Studies in Mathematics. Am. Math. Soc. Providence, RI, pp. xxii+749 (2010)Google Scholar
  19. R. Fitzpatrick, Plasma Physics: An Introduction (CRC Press, Taylor & Francis Group, 2014)Google Scholar
  20. H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949)MathSciNetCrossRefGoogle Scholar
  21. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products. Seventh. (Elsevier/Academic Press, Amsterdam, pp. xlviii+1171, 2007)Google Scholar
  22. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)CrossRefGoogle Scholar
  23. M.G. Harrison, T. Neukirch, One-dimensional Vlasov-maxwell equilibrium for the force-free harris sheet. Phys. Rev. Lett. 102.13, pp. 135003-+ (2009)Google Scholar
  24. D.W. Hewett, C.W. Nielson, D. Winske, Vlasov confinement equilibria in one dimension. Phys. Fluids 19, 443–449 (1976). MarADSCrossRefGoogle Scholar
  25. G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett, E. Quataert, A.A. Schekochihin, Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590–614 (2006). NovADSCrossRefGoogle Scholar
  26. J.H. Jeans, On the theory of star-streaming and the structure of the universe. Mon. Not. Royal Astron. Soc. 76, 70–84 (1915). DecADSCrossRefGoogle Scholar
  27. L.D. Landau, On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 25–34 (1946)MathSciNetzbMATHGoogle Scholar
  28. T.G. Northrop, The guiding center approximation to charged particle motion. Ann. Phys. 15, 79–101 (1961). JulyADSCrossRefGoogle Scholar
  29. K.B. Quest, F.V. Coroniti, Linear theory of tearing in a high-beta plasma. J. Geophys. Res. 86, 3299–3305 (1981). MayGoogle Scholar
  30. G. Sansone, Orthogonal functions. Revised English ed. Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. Pure and Applied Mathematics, Vol. IX. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, pp. xii+411 (1959)Google Scholar
  31. A.A. Schekochihin, J.T. Parker, E.G. Highcock, P.J. Dellar, W. Dorland, G.W. Hammett, Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82, 905820212, p. 47 (2016)Google Scholar
  32. A. Suzuki, T. Shigeyama, A novel method to construct stationary solutions of the Vlasov-Maxwell system. Phys. Plasmas 15.4, p. 042107-+ (2008)Google Scholar
  33. G.N. Watson, Notes on generating functions of polynomials: (2) Hermite Polynomials. J. London Math. Soc. s1-8.3, 194–199 (1933)Google Scholar
  34. E.W. Weisstein, Hermite Polynomial. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/HermitePolynomial.html (2017)
  35. D.V. Widder, Necessary and sufficient conditions for the representation of a function by a Weierstrass transform. Trans. Am. Math. Soc. 71, 430–439 (1951). NovMathSciNetCrossRefGoogle Scholar
  36. D.V. Widder, The convolution transform. Bull. Am. Math. Soc. 60(5), 444–456 (1954). SeptMathSciNetCrossRefGoogle Scholar
  37. F. Wilson, T. Neukirch, A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet. Phys. Plasmas 18(8), 082108 (2011). AugADSCrossRefGoogle Scholar
  38. A. Zocco, Linear collisionless Landau damping in Hilbert space. J. Plasma Phys. 81.4, 905810402, p. 049002 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations