• Oliver AllansonEmail author
Part of the Springer Theses book series (Springer Theses)


More than \(99\%\) of the known matter in the Universe is in the plasma state (Baumjohann and Treumann 1997), by far the most significant material constituent of stellar, interplanetary, interstellar and intergalactic media. Not only is a deep understanding of plasmas then clearly necessary to understand the physics of our universe, but plasmas are also of real interest to us on Earth. Nuclear fusion experiments—and in principle, future power stations—necessarily exploit the plasma state to work, either using high-temperature plasmas confined by strong magnetic fields, or plasmas formed by the laser ablation of a solid fuel target.


  1. B. Abraham-Shrauner, Exact, stationary wave solutions of the nonlinear Vlasov equation. Phys. Fluids 11, 1162–1167 (1968)Google Scholar
  2. B. Abraham-Shrauner, Force-free Jacobian equilibria for Vlasov-Maxwell plasmas. Phys. Plasmas 20(10), 102117 (2013)Google Scholar
  3. O. Allanson, T. Neukirch, S. Troscheit, F. Wilson, From onedimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82.3, 905820306 (2016)Google Scholar
  4. O. Allanson, T. Neukirch, F. Wilson, S. Troscheit, An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta. Phys. Plasmas 22.10, 102116 (2015)Google Scholar
  5. O. Allanson, F. Wilson, T. Neukirch, Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field. Phys. Plasmas 23(9), 092106 (2016)ADSCrossRefGoogle Scholar
  6. W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969)Google Scholar
  7. A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011)Google Scholar
  8. A. Artemyev, L. Zelenyi, Kinetic structure of current sheets in the earth magnetotail. Space Sci. Rev. 178, 419–440 (2013)Google Scholar
  9. N. Attico, F. Pegoraro, Periodic equilibria of the Vlasov-Maxwell system. Phys. Plasmas 6, 767–770 (1999)Google Scholar
  10. N. Aunai, M. Hesse, S. Zenitani, M. Kuznetsova, C. Black, R. Evans, R. Smets, Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: coplanar and guide field configurations. Phys. Plasmas 20.2, 022902, 022902 (2013)Google Scholar
  11. M. Balikhin, M. Gedalin, Generalization of the Harris current sheet model for non-relativistic, relativistic and pair plasmas. J. Plasma Phys. 74, 749–763 (2008)Google Scholar
  12. W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics. (Imperial College Press, 1997)Google Scholar
  13. M.T. Beidler, P.A. Cassak, Model for incomplete reconnection in Sawtooth crashes. Phys. Rev. Lett. 107.25, 255002, 255002 (2011)Google Scholar
  14. G. Belmont, N. Aunai, R. Smets, Kinetic equilibrium for an asymmetric tangential layer. Phys. Plasmas 19(2), 022108 (2012)Google Scholar
  15. I.B. Bernstein, J.M. Greene, M.D. Kruskal, Exact nonlinear plasma oscillations. Phys. Rev. 108, 546–550 (1957)Google Scholar
  16. B. Bertotti, Fine structure in current sheaths. Ann. Phys. 25, 271–289 (1963)Google Scholar
  17. J. Birn, K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P. L. Pritchett, K. Schindler, L. Yin, J. B?chner, T. Neukirch, E.R. Priest, Forced magnetic reconnection. Geophys. Res. Lett. 32.6, L06105 (2005)Google Scholar
  18. J. Birn, M. Hesse, Energy release and transfer in guide field reconnection. Phys. Plasmas 17.1, 012109, 012109 (2010)Google Scholar
  19. J. Birn, E. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations. (Cambridge University Press, 2007)Google Scholar
  20. J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys. 106(A3), 3715–3719 (2001)ADSCrossRefGoogle Scholar
  21. J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. Space Phys. 109(A2), A02217 (2004)ADSGoogle Scholar
  22. D. Biskamp, Magnetic reconnection in plasmas. Magnetic reconnection in plasmas, Cambridge, UK: Cambridge University Press, 2000 xiv, 387 p. Cambridge monographs on plasma physics, vol. 3, ISBN 0521582881 (2000)Google Scholar
  23. N.A. Bobrova, S.V. Bulanov, J.I. Sakai, D. Sugiyama, Force-free equilibria and reconnection of the magnetic field lines in collisionless plasma configurations. Phys. Plasmas 8, 759–768 (2001)Google Scholar
  24. N.A. Bobrova, S.I. Syrovatskii, Violent instability of one-dimensional forceless magnetic field in a rarefied plasma. Sov. J. Exp. Theor. Phys. Lett. 30, 535-+ (1979)Google Scholar
  25. A. Borissov, T. Neukirch, J. Threlfall, Particle acceleration in collapsing magnetic traps with a braking plasma jet. Solar Phys. 291, 1385–1404 (2016)Google Scholar
  26. S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)ADSGoogle Scholar
  27. S.G. Brush, The kinetic theory of gases. World Sci., 262–349 (2003)Google Scholar
  28. D. Burgess, M. Scholer, Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles (Cambridge University Press, Cambridge Atmospheric and Space Science Series, 2015)Google Scholar
  29. R.A. Cairns, R. Bingham, P. Norreys, R. Trines, Laminar shocks in high power laser plasma interactions. Phys. Plasmas 21.2, 022112, 022112 (2014)Google Scholar
  30. J.R. Cary, A.J. Brizard, Hamiltonian theory of guiding-center motion. Rev. Modern Phys. 81, 693–738 (2009)Google Scholar
  31. P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976)Google Scholar
  32. S.C. Cowley, Lecture Notes for the UCLA course. (2003/4)
  33. R.C. Davidson, Physics of Nonneutral Plasmas. (World Scientific Press, 2001)Google Scholar
  34. C.M. Davies, The boundary layer between a cold plasma and a confined magnetic field when the plasma is not normally incident on the boundary. Planetary Space Sci. 16, 1249-+ (1968)Google Scholar
  35. C.M. Davies, The structure of the magnetopause. Planetary Space Sci. 17, 333-+ (1969)Google Scholar
  36. C.R. DeVore, S.K. Antiochos, C.E. Black, A.K. Harding, C. Kalapotharakos, D. Kazanas, A.N. Timokhin, A model for the electrically charged current sheet of a pulsar. Astrophys. J. 801(109), 109 (2015)Google Scholar
  37. J.F. Drake, Y.C. Lee, Kinetic theory of tearing instabilities. Phys. Fluids 20, 1341–1353 (1977)Google Scholar
  38. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961)Google Scholar
  39. B. Eliasson, P.K. Shukla, Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. Sov. J. Exp. Theor. Phys. Lett. 83, 447–452 (2006)Google Scholar
  40. B. Eliasson, P.K. Shukla, M.E. Dieckmann, Theory and simulations of nonlinear kinetic structures in plasmas. Plasma Phys. Controll. Fusion 48, B257–B265 (2006)Google Scholar
  41. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of integral transforms, vol. I. Based, in part, on notes left by Harry Bateman. (McGraw- Hill Book Company, Inc., New York-Toronto-London, 1954), pp. xx+391Google Scholar
  42. D.F. Escande, F. Doveil, Y. Elskens, N-body description of Debye shielding and Landau damping. Plasma Phys. Controll. Fusion 58.1, 014040, 014040 (2016)Google Scholar
  43. R. Fitzpatrick, Plasma Physics: An Introduction (CRC Press, Taylor & Francis Group, 2014)Google Scholar
  44. D.W. Forslund, J.P. Freidberg, Theory of laminar collisionless shocks. Phys. Rev. Lett. 27, 1189–1192 (1971)Google Scholar
  45. D.W. Forslund, C.R. Shonk, Formation and structure of electrostatic Collisionless shocks. Phys. Rev. Lett. 25, 1699–1702 (1970)Google Scholar
  46. J.P. Freidberg, Ideal Magnetohydrodynamics. (Plenum Publishing Corportation, 1987)Google Scholar
  47. G. Fruit, P. Louarn, A. Tur, D. Le QuAu, On the propagation of magnetohydrodynamic perturbations in a Harris-type current sheet 1. Propagation on discrete modes and signal reconstruction. J. Geophys. Res. (Space Physics) 107, 1411, SMP 39-1-SMP 39–18 (2002)Google Scholar
  48. W.-Z. Fu, L.-N. Hau, Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution. Phys. Plasmas 12.7, pp. 070701-+ (2005)Google Scholar
  49. H.P. Furth, J. Killeen, M.N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963)Google Scholar
  50. S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge Atmospheric and Space Science Series, 2005)Google Scholar
  51. A. Ghosh, M.S. Janaki, B. Dasgupta, A. Bandyopadhyay, Chaotic magnetic fields in Vlasov-Maxwell equilibria. Chaos 24.1, 013117, 013117 (2014)Google Scholar
  52. H. Grad, Boundary layer between a plasma and a magnetic field. Phys. Fluids 4, 1366–1375 (1961)Google Scholar
  53. H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949)MathSciNetCrossRefGoogle Scholar
  54. J.M. Greene, One-dimensional Vlasov-Maxwell equilibria. Phys. Fluids B 5, 1715–1722 (1993)Google Scholar
  55. D.J. Griffiths, Introduction to Electrodynamics. (Pearson, 2013)Google Scholar
  56. F. Guo, H. Li, W. Daughton, Y.-H. Liu, Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005 (2014)Google Scholar
  57. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)CrossRefGoogle Scholar
  58. M.G. Harrison, Equilibrium and dynamics of collisionless current sheets (2009). The University of St Andrews, PhD thesisGoogle Scholar
  59. M.G. Harrison, T. Neukirch, One-dimensional Vlasov-Maxwell equilibrium for the force-free harris sheet. Phys. Rev. Lett. 102.13, 135003-+ (2009a)Google Scholar
  60. M.G. Harrison, T. Neukirch, Some remarks on one-dimensional forcefree Vlasov-Maxwell equilibria. Phys. Plasmas 16.2, 022106-+ (2009b)Google Scholar
  61. M. Hesse, N. Aunai, D. Sibeck, J. Birn, On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014)Google Scholar
  62. M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: electron processes and transport modeling. J. Geophys. Res. 106, 3721–3736 (2001)Google Scholar
  63. M. Hesse, M. Kuznetsova, K. Schindler, J. Birn, Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection. Phys. Plasmas 12.10, pp. 100704-+ (2005)Google Scholar
  64. M. Hesse, K. Schindler, A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93, 5559–5567 (1988)Google Scholar
  65. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160(1), 3–23 (2011)ADSCrossRefGoogle Scholar
  66. M. Hesse, N. Aunai, S. Zenitani, M. Kuznetsova, J. Birn, Aspects of collisionless magnetic reconnection in asymmetric systems. Phys. Plasmas 20(6), 061210 (2013)ADSCrossRefGoogle Scholar
  67. M. Hesse, N. Aunai, J. Birn, P. Cassak, R.E. Denton, J.F. Drake, T. Gombosi, M. Hoshino, W. Matthaeus, D. Sibeck, S. Zenitani, Theory and modeling for the magnetospheric multiscale mission. Space Sci. Rev. 199(1), 577–630 (2016)ADSCrossRefGoogle Scholar
  68. D.W. Hewett, C.W. Nielson, D. Winske, Vlasov confinement equilibria in one dimension. Phys. Fluids 19, 443–449 (1976)Google Scholar
  69. F.C. Hoh, Stability of sheet pinch. Phys. Fluids 9, 277–284 (1966)Google Scholar
  70. J. Hurley, Analysis of the transition region between a uniform plasma and its confining magnetic field. II. Phys. Fluids 6, 83–88 (1963)Google Scholar
  71. I.H. Hutchinson, Electron holes in phase space: What they are and why they matter. Phys. Plasmas 24(5), 055601 (2017)ADSCrossRefGoogle Scholar
  72. M.S. Janaki, B. Dasgupta, Vlasov-Maxwell equilibria: examples from higher-curl Beltrami magnetic fields. Phys. Plasmas 19(3), 032113 (2012)Google Scholar
  73. J.R. Kan, Non-linear tearing structures in equilibrium current sheet. Planetary Space Sci. 27, 351–354 (1979)Google Scholar
  74. J.R. Kan, S.-I. Akasofu, A model of the auroral electric field. J. Geophys. Res. 84, 507–512 (1979)Google Scholar
  75. J.R. Kan, L.C. Lee, S.-I. Akasofu, Two-dimensional potential double layers and discrete auroras. J. Geophys. Res. 84, 4305–4315 (1979)Google Scholar
  76. A.R. Karimov, H.R. Lewis, Nonlinear solutions of the Vlasov-Poisson equations. Phys. Plasmas 6, 759–761 (1999)Google Scholar
  77. V.V. Kocharovsky, V.V. Kocharovsky, V.J. Martyanov, Self-consistent current sheets and filaments in relativistic collisionless plasma with arbitrary energy distribution of particles. Phys. Rev. Lett. 104.21, 215002, 215002 (2010)Google Scholar
  78. D.Y. Kolotkov, I.Y. Vasko, V.M. Nakariakov, Kinetic model of forcefree current sheets with non-uniform temperature. Phys. Plasmas 22.11, 112902, 112902 (2015)Google Scholar
  79. N.A. Krall, A.W. Trivelpiece, Principles of plasma physics. International Student Edition—International Series in Pure and Applied Physics. (McGraw-Hill, Tokyo Kogakusha, 1973)Google Scholar
  80. R.M. Kulsrud, MHD description of plasma, in Handbook of Plasma Physics, vol. 1, ed. by A.A. Galeev, R.N. Sudan (North- Holland, Amsterdam, 1983)Google Scholar
  81. G.S. Lakhina, K. Schindler, Tearing modes in the magnetopause current sheet. Astrophys. Space Sci. 97, 421–426 (1983)Google Scholar
  82. S.H. Lam, One-dimensional static pinch solutions. Phys. Fluids 10, 2454–2457 (1967)Google Scholar
  83. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier Science, Course of Theoretical Physics, 2013)Google Scholar
  84. A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli (eds.) Magnetic fields in diffuse media, vol. 407 (Astrophysics and Space Science Library, 2015)Google Scholar
  85. A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)Google Scholar
  86. L.C. Lee, J.R. Kan, A unified kinetic model of the tangential magnetopause structure. J. Geophys. Res. (Space Physics) 84, 6417–6426 (1979a)Google Scholar
  87. L.C. Lee, J.R. Kan, Transition layer between two magnetized plasmas. J. Plasma Phys. 22, 515–524 (1979b)Google Scholar
  88. J. Lemaire, L.F. Burlaga, Diamagnetic boundary layers—a kinetic theory. Astrophys. Space Sci. 45, 303–325 (1976)Google Scholar
  89. I. Lerche, On the boundary layer between aWarm, Streaming plasma and a confined magnetic field. J. Geophys. Res. (Space Physics) 72, 5295-+ (1967)Google Scholar
  90. H.R. Lewis, K.R. Symon, Exact time-dependent solutions of the Vlasov-Poisson equations. Phys. Fluids 27, 192–196 (1984)Google Scholar
  91. R.G. Littlejohn, Variational principles of guiding centre motion. J. Plasma Phys. 29, 111–125 (1983)Google Scholar
  92. Y.-H. Liu, M. Hesse, Suppression of collisionless magnetic reconnection in asymmetric current sheets. Phys. Plasmas 23.6, 060704, 060704 (2016)Google Scholar
  93. N.F. Loureiro, D.A. Uzdensky, Magnetic reconnection: from the Sweet??? Parker model to stochastic plasmoid chains. Plasma Phys. Controll. Fusion 58(1), 014021 (2016)ADSCrossRefGoogle Scholar
  94. K. Malakit, M.A. Shay, P.A. Cassak, C. Bard, Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J. Geophys. Res. (Space Physics) 115, A10223, A10223 (2010)Google Scholar
  95. A. Marcowith, A. Bret, A. Bykov, M. E. Dieckman, L. O’C Drury, B. Lembge, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, A. Stockem Novo, The microphysics of collisionless shock waves. Reports Progress Phys. 79.4, 046901, 046901 (2016)Google Scholar
  96. H.G. Mitchell Jr., J.R. Kan, Current interruption in a collisionless plasma by nonlinear electrostatic waves. Planetary Space Sci. 27, 933–937 (1979)Google Scholar
  97. D. Montgomery, G. Joyce, Shock-like solutions of the electrostatic Vlasov equation. J. Plasma Phys. 3, 1–11 (1969)Google Scholar
  98. T.E. Moore, J.L. Burch, R.B. Torbert, Magnetic reconnection. Nat. Phys. 11, 611–613 (2015)Google Scholar
  99. E. Moratz, E.W. Richter, Elektronen-Geschwindigkeitsverteilungsfunktionen fr kraftfreie bzw. teilweise kraftfreie Magnetfelder. Zeitschrift Naturforschung Teil A 21, 1963 (1966)Google Scholar
  100. A.I. Morozov, L.S. Solov’ev, Motion of charged particles in electromagnetic fields. Rev. Plasma Phys. 2, 201 (1966)ADSGoogle Scholar
  101. F. Mottez, Exact nonlinear analytic Vlasov-Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10, 2501–2508 (2003)Google Scholar
  102. F. Mottez, The pressure tensor in tangential equilibria. Annales Geophysicae 22, 3033–3037 (2004)Google Scholar
  103. L. Muschietti, I. Roth, C.W. Carlson, R.E. Ergun, Transverse instability of magnetized electron holes. Phys. Rev. Lett. 85, 94–97 (2000)Google Scholar
  104. H.E. Mynick, W.M. Sharp, A.N. Kaufman, Realistic Vlasov slab equilibria with magnetic shear. Phys. Fluids 22, 1478–1484 (1979)Google Scholar
  105. T. Neukirch, F. Wilson, M.G. Harrison, A detailed investigation of the properties of a Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Plasmas 16(12), 122102 (2009)Google Scholar
  106. C.S. Ng, A. Bhattacharjee, Bernstein-greene-kruskal modes in a three- dimensional plasma. Phys. Rev. Lett. 95.24, 245004 (2005)Google Scholar
  107. C.S. Ng, A. Bhattacharjee, F. Skiff. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: new results on old problems). Phys. Plasmas 13.5, 055903, 055903 (2006)Google Scholar
  108. C.S. Ng, S.J. Soundararajan, E. Yasin, Electrostatic structures in space plasmas: stability of two-dimensional magnetic bernstein-greenekruskal modes. In: J. Heerikhuisen, G. Li, N. Pogorelov, G. Zank (eds.) American Institute of Physics Conference Series. vol. 1436. American Institute of Physics Conference Series, pp. 55–60 (2012)Google Scholar
  109. R.B. Nicholson, Solution of the Vlasov equations for a Plasma in an externally uniform magnetic field. Phys. Fluids 6, 1581–1586 (1963)Google Scholar
  110. T.G. Northrop, The guiding center approximation to charged particle motion. Ann. Phys. 15, 79–101 (1961)Google Scholar
  111. T.G. Northrop, Adiabatic charged-particle motion. Rev. Geophys. Space Phys. 1, 283–304 (1963)ADSCrossRefGoogle Scholar
  112. A. Otto, K. Schindler, An energy principle for two-dimensional collisionless relativistic plasmas. Plasma Phys. Controll. Fusion 26, 1525–1533 (1984)Google Scholar
  113. E.V. Panov, A.V. Artemyev, R. Nakamura, W. Baumjohann, Two types of tangential magnetopause current sheets: Cluster observations and theory. J. Geophys. Res. (Space Physics) 116, A12204, A12204 (2011)Google Scholar
  114. E.N. Parker, Spontaneous current sheets in magnetic fields: with applications to stellar x-rays. Spontaneous current sheets in magnetic fields: with applications to stellar x-rays. International Series in Astronomy and Astrophysics, vol. 1 (Oxford University Press, New York, 1994)Google Scholar
  115. E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62(4), 509–520 (1957)ADSCrossRefGoogle Scholar
  116. A.L. Peratt, advances in numerical modeling of astrophysical and space Plasmas. Astrophys. Space Sci. 242, 93–163 (1996)Google Scholar
  117. H.E. Petschek, Magnetic field annihilation. NASA Spec. Publ. 50, 425 (1964)ADSGoogle Scholar
  118. T.D. Phan, G. Paschmann, Low-latitude dayside magnetopause and boundary layer for high magnetic shear 1. Structure and motion. J. Geophys. Res. 101, 7801–7816 (1996)Google Scholar
  119. D. Pines, D. Bohm, A Collective Description of electron interactions: II. Collective versus individual particle aspects of the interactions. Phys. Rev. 85, 338–353 (1952)Google Scholar
  120. J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. Royal Soc. Lond. 175, 343–361 (1884)ADSCrossRefGoogle Scholar
  121. E. Priest, T. Forbes, Magnetic Reconnection (Cambridge University Press, Cambridge, UK, 2000)Google Scholar
  122. E. Priest. Magnetohydrodynamics of the Sun (2014)Google Scholar
  123. P.L. Pritchett, Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. (Space Physics) 113, A06210, A06210 (2008)Google Scholar
  124. K.B. Quest, F.V. Coroniti, Linear theory of tearing in a high-beta plasma. J. Geophys. Res. 86, 3299–3305 (1981)Google Scholar
  125. S.H. Rogers, E.C. Whipple, Generalized adiabatic theory applied to the magnetotail current sheet. Astrophys. Space Sci. 144, 231–256 (1988)Google Scholar
  126. M. Roth, J. de Keyser, M.M. Kuznetsova, Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317 (1996)Google Scholar
  127. R.Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23 (1966)ADSGoogle Scholar
  128. H. Schamel, Electron holes, ion holes and double layers. Electrostatic phase space structures in theory and experiment. Phys. Reports 140, 161–191 (1986)Google Scholar
  129. H. Schamel, Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas. Phys. Plasmas 7, 4831–4844 (2000)Google Scholar
  130. H. Schamel, Non-linear electrostatic plasma waves. J. Plasma Phys. 7, 1–12 (1972a)Google Scholar
  131. H. Schamel, Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905–924 (1972b)Google Scholar
  132. H. Schamel, Stationary solutions of the electrostatic Vlasov equation. Plasma Phys. 13, 491–505 (1971)Google Scholar
  133. H. Schamel, Theory of electron holes. Physica Scripta 20, 336–342 (1979)Google Scholar
  134. K. Schindler, Physics of Space Plasma Activity. (Cambridge University Press, 2007)Google Scholar
  135. K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. (Space Physics) 107, 20–1 (2002)Google Scholar
  136. J. Schmid-Burgk, Zweidimensionale selbstkonsistente Losungen der stationaren Wlassowgleichung fr Zweikomponentplasmen (1965). Max-Planck-Institut fr Physik und Astrophysik, Master’s thesisGoogle Scholar
  137. A. Sestero, Charge separation effects in the Ferraro-Rosenbluth cold plasma sheath model. Phys. Fluids 8, 739–744 (1965)Google Scholar
  138. A. Sestero, Self-consistent description of a warm stationary plasma in a uniformly sheared magnetic field. Phys. Fluids 10, 193–197 (1967)Google Scholar
  139. A. Sestero, Structure of plasma sheaths. Phys. Fluids 7, 44–51 (1964)Google Scholar
  140. A. Sestero, Vlasov equation study of plasma motion across magnetic fields. Phys. Fluids 9, 2006–2013 (1966)Google Scholar
  141. K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53(6), 473–482 (2001)ADSCrossRefGoogle Scholar
  142. A. Spitkovsky, Particle acceleration in relativistic collisionless shocks: fermi process at last? Astrophys. J. 682(L5), L5 (2008)Google Scholar
  143. D.P. Stern, One-dimensional models of quasi-neutral parallel electric fields. Technical report (1981a)Google Scholar
  144. D.P. Stern, one-dimensional models of quasi-neutral parallel electric fields. J. Geophys. Res. 86, 5839–5860 (1981b)Google Scholar
  145. A. Stockem, F. Fiuza, A. Bret, R.A. Fonseca, L.O. Silva, Exploring the nature of collisionless shocks under laboratory conditions. Sci. Reports 4(3934), 3934 (2014)Google Scholar
  146. S.-Y. Su, B.U.O. Sonnerup, On the equilibrium of the magnetopause current layer. J. Geophys. Res. (Space Physics) 76, 5181–5188 (1971)ADSCrossRefGoogle Scholar
  147. A. Suzuki, T. Shigeyama, A novel method to construct stationary solutions of the Vlasov-Maxwell system. Phys. Plasmas 15.4, 042107-+ (2008)Google Scholar
  148. B. Svedung Wettervik, T.C. DuBois, T. Fulop, Vlasov modelling of laser-driven collisionless shock acceleration of protons. Phys. Plasmas 23.5, 053103, 053103 (2016)Google Scholar
  149. P.A. Sweet, The neutral point theory of solar flares. In: B. Lehnert (ed.) Electromagnetic Phenomena in Cosmical Physics, vol. 6. (IAU Symposium, p. 123 1958)Google Scholar
  150. M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (Space Physics) 108, 1218, 1218 (2003)Google Scholar
  151. E. Tassi, F. Pegoraro, G. Cicogna, Solutions and symmetries of forcefree magnetic fields. Phys. Plasmas 15.9, pp. 092113-+ (2008)Google Scholar
  152. H. Tasso, G. Throumoulopoulos, Tokamak-like Vlasov equilibria. Eur. Phys. J. D 68(175), 175 (2014)Google Scholar
  153. J. Threlfall, T. Neukirch, C.E. Parnell, S. Eradat, Oskoui, Particle acceleration at a reconnecting magnetic separator. Astron. Astrophys. 574(A7), A7 (2015)Google Scholar
  154. D. Tong, Lectures on Classical Dynamics. (2004)
  155. D. Tong, Lectures on Kinetic Theory. (2012)
  156. L. Tonks, Trajectory-wise analysis of cylindrical and plane plasmas in a magnetic field and without collisions. Phys. Rev. 113, 400–407 (1959)Google Scholar
  157. A. Vaivads, A. Retin?, J. Soucek, Yu. V. Khotyaintsev, F. Valentini, C.P. Escoubet, O. Alexandrova, M. Andr?, S.D. Bale, M. Balikhin et al., Turbulence heating ObserveR—satellite mission proposal. J. Plasma Phys. 82.5 (2016)Google Scholar
  158. I.Y. Vasko, A.V. Artemyev, V.Y. Popov, H.V. Malova, Kinetic models of two-dimensional plane and axially symmetric current sheets: group theory approach. Phys. Plasmas 20.2, 022110, 022110 (2013)Google Scholar
  159. I.Y. Vasko, O.V. Agapitov, F.S. Mozer, A.V. Artemyev, J.F. Drake, Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution. Phys. Plasmas 23(5), 052306 (2016)ADSCrossRefGoogle Scholar
  160. G.E. Vekstein, N.A. Bobrova, S.V. Bulanov, On the motion of charged particles in a sheared force-free magnetic field. J. Plasma Phys. 67, 215–221 (2002)Google Scholar
  161. A.A. Vinogradov, I.Y. Vasko, A. V. Artemyev, E.V. Yushkov, A.A. Petrukovich, L.M. Zelenyi, Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys. Plasmas 23.7, 072901, 072901 (2016)Google Scholar
  162. A.A. Vlasov, The vibrational properties of an electron gas. Phys. Uspekhi 10(6), 721–733 (1968)ADSCrossRefGoogle Scholar
  163. F. Wilson, T. Neukirch, A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet. Phys. Plasmas 18(8), 082108 (2011)Google Scholar
  164. M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Modern Phys. 82, 603–664 (2010)Google Scholar
  165. P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. (Space Physics) 110, 1202-+ (2005)Google Scholar
  166. P.H. Yoon, A.T.Y. Lui, R.B. Sheldon, On the current sheet model with distribution. Phys. Plasmas 13.10, 102108-+ (2006)Google Scholar
  167. A.I. Zayed, Handbook of function and generalized function transformations. Math. Sci. Ref. Ser. (CRC Press, Boca Raton, FL, 1996), pp. xxiv+643Google Scholar
  168. L.M. Zelenyi, H.V. Malova, A.V. Artemyev, V.Y. Popov, A. Petrukovich, Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Reports 37(2), 118–160 (2011)ADSCrossRefGoogle Scholar
  169. S. Zenitani, M. Hesse, A. Klimas, M. Kuznetsova, New measure of the dissipation region in Collisionless magnetic reconnection. Phys. Rev. Lett. 106.19, 195003, 195003 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations