Microquasars, Binary Systems with Powerful Jets

  • Alba Fernández BarralEmail author
Part of the Springer Theses book series (Springer Theses)


Our Galaxy contains hundred billions of stars with very different features, masses, size and ages. The understanding of their birth, evolution and death was, and still remains to be, a goal to achieve for the astronomers. The life of the stars begins within molecular clouds, where gravity is responsible of joining the dust and gas of the environment to give rise to the celestial objects.


  1. Aharonian FA et al (1998) Nature 42:579Google Scholar
  2. Albert J et al (2006) Science 312:1771ADSCrossRefGoogle Scholar
  3. Albert J et al (2007) ApJ 665:L51ADSCrossRefGoogle Scholar
  4. Atoyan AM et al (1999) MNRAS 302:253ADSCrossRefGoogle Scholar
  5. Bednarek W et al (2007) A&A 464:437ADSCrossRefGoogle Scholar
  6. Belloni T et al (2000) A&A 355:271ADSGoogle Scholar
  7. Blandford RD (1976) MNRAS 176:465ADSCrossRefGoogle Scholar
  8. Blandford RD et al (1977) MNRAS 179:433ADSCrossRefGoogle Scholar
  9. Blandford RD et al (1982) MNRAS 199:883ADSCrossRefGoogle Scholar
  10. Bondi H (1952) MNRAS 112:195ADSCrossRefGoogle Scholar
  11. Bordas P et al (2009) A&A 497:325ADSCrossRefGoogle Scholar
  12. Bosch-Ramon V et al (2006) A&A 447:263ADSCrossRefGoogle Scholar
  13. Bosch-Ramon V et al (2009) Int J Mod Phys D 18:347ADSCrossRefGoogle Scholar
  14. Camenzind M (2007) Compact objects in astrophysics: white dwarfs, neutron stars, and black holesGoogle Scholar
  15. Chandrasekhar S (1931) ApJ 74:81ADSCrossRefGoogle Scholar
  16. Collaboration Fermi LAT et al (2009a) Science 326:1512ADSCrossRefGoogle Scholar
  17. Collaboration Fermi LAT et al (2009b) Science 326:1512ADSCrossRefGoogle Scholar
  18. Coppi PS (1999) In: Poutanen J, Svensson R (eds) High energy processes in accreting black holes. Astronomical society of the pacific conference series, vol 161, p 375Google Scholar
  19. Curtis HD (1918) Publications of lick observatory, vol 13, p 31Google Scholar
  20. Fender RP et al (2004) MNRAS 355:1105ADSCrossRefGoogle Scholar
  21. Gallo E et al (2003) MNRAS 344:60ADSCrossRefGoogle Scholar
  22. Gallo E et al (2012) MNRAS 423:590ADSCrossRefGoogle Scholar
  23. Georganopoulos M et al (2002) A&A 388:L25ADSCrossRefGoogle Scholar
  24. Giacconi R et al (1962) Phys Rev Lett 9:439ADSCrossRefGoogle Scholar
  25. Gilfanov M (2010) In: Belloni T (ed) Lecture notes in physics, vol 794. Springer, Berlin, p 17Google Scholar
  26. Grimm H-J et al (2002) A&A 391:923ADSCrossRefGoogle Scholar
  27. Gursky H (1966) S&T 32Google Scholar
  28. Heger A et al (2003) ApJ 591:288ADSCrossRefGoogle Scholar
  29. Jamil O et al (2010) MNRAS 401:394ADSCrossRefGoogle Scholar
  30. Kaiser CR et al (2000) A&A 356:975ADSGoogle Scholar
  31. Levinson A et al (2001) Phys Rev Lett 87:171101ADSCrossRefGoogle Scholar
  32. Lewin WHG et al (1995) X-ray binariesGoogle Scholar
  33. Longair MS (2011) High energy astrophysicsGoogle Scholar
  34. Maccarone TJ (2003) A&A 409:697ADSCrossRefGoogle Scholar
  35. Malyshev D et al (2013a) MNRAS 434:2380ADSCrossRefGoogle Scholar
  36. Margon B (1984) ARA&A 22:507ADSCrossRefGoogle Scholar
  37. Markoff S et al (2001) A&A 372:L25ADSCrossRefGoogle Scholar
  38. Meier D (1996) ApJ 459:185ADSCrossRefGoogle Scholar
  39. Meier DL et al (2001) Science 291:84ADSCrossRefGoogle Scholar
  40. Mirabel IF et al (1992) Nature 358:215ADSCrossRefGoogle Scholar
  41. Mirabel IF et al (1998) Nature 392:673ADSCrossRefGoogle Scholar
  42. Mirabel IF et al (1999) ARA&A 37:409ADSCrossRefGoogle Scholar
  43. Mirabel IF (2006) Science 312:1759ADSCrossRefGoogle Scholar
  44. Orellana M et al (2007) A&A 476:9ADSCrossRefGoogle Scholar
  45. Rees MJ (1998) In: Wald RM (ed) Black holes and relativistic stars, vol 79Google Scholar
  46. Rees MJ (1984) ARA&A 22:471ADSCrossRefGoogle Scholar
  47. Reig P et al (1999) MNRAS 306:100ADSCrossRefGoogle Scholar
  48. Romero GE et al (2002) A&A 393:L61ADSCrossRefGoogle Scholar
  49. Romero GE et al (2003) A&A 410:L1ADSCrossRefGoogle Scholar
  50. Romero GE et al (2008) A&A 485:623ADSCrossRefGoogle Scholar
  51. Rushton A et al (2012a) MNRAS 419:3194ADSCrossRefGoogle Scholar
  52. Russell DM et al (2010), ArXiv e-printsGoogle Scholar
  53. Sabatini S et al (2010a) ApJ 712:L10ADSCrossRefGoogle Scholar
  54. Sabatini S et al (2013a) ApJ 766:83ADSCrossRefGoogle Scholar
  55. Savonije J (1983) In: Lewin WHG, van den Heuvel EPJ (eds) Accretion-driven stellar X-ray sources, pp 343–366Google Scholar
  56. Shakura NI et al (1973) A&A 24:337ADSGoogle Scholar
  57. Tavani M et al (2009a) Nature 462:620Google Scholar
  58. Tavani M et al (2009b) Nature 462:620ADSCrossRefGoogle Scholar
  59. Uchida Y et al (1985) PASJ 37:515ADSGoogle Scholar
  60. Uchida Y et al (1986) Can J Phys 64:507ADSCrossRefGoogle Scholar
  61. van der Laan H (1966) Nature 211:1131ADSCrossRefGoogle Scholar
  62. Vieyro FL et al (2012) A&A 542:A7ADSCrossRefGoogle Scholar
  63. Vila GS et al (2008) Int J Mod Phys D 17:1903ADSCrossRefGoogle Scholar
  64. Yuan F et al (2005) ApJ 620:905ADSCrossRefGoogle Scholar
  65. Zhang J-F et al (2015) ApJ 806:168ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CTAO gGmbH (Headquarters)HeidelbergGermany
  2. 2.CTAO gGmbH (Local Office)BolognaItaly

Personalised recommendations