Advertisement

Basics on Mapping Solar Radiation Gridded Data

  • Jesús PoloEmail author
  • Luis Martín-Pomares
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

There is a lot of gridded information on meteorological variables elsewhere. Numerical weather prediction models and satellite-derived models deliver time series and aggregates of main meteorological variables with global coverage that can be finally used to create maps offering information on the spatial variability of those magnitudes. This chapter intends to give a very simple overview of mapping solar radiation data or any other gridded variable using QGIS open-source Geographic Information System.

References

  1. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data. Analysis with R. Springer, New YorkzbMATHGoogle Scholar
  2. Chelbi M, Gagnon Y, Waewsak J (2015) Solar radiation mapping using sunshine duration-based models and interpolation techniques: application to Tunisia. Energy Convers Manag 101:203–215.  https://doi.org/10.1016/J.ENCONMAN.2015.04.052CrossRefGoogle Scholar
  3. ESRI (1998) ESRI shapefile technical descriptionGoogle Scholar
  4. Hofierka J, Lacko M, Zubal S (2017) Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP. Comput Geosci 107:20–27.  https://doi.org/10.1016/J.CAGEO.2017.07.007CrossRefGoogle Scholar
  5. Martín-Chivelet N (2016) Photovoltaic potential and land-use estimation methodology. Energy 94:233–242.  https://doi.org/10.1016/j.energy.2015.10.108CrossRefGoogle Scholar
  6. Navarro AA, Ramírez L, Domínguez P et al (2016) Review and validation of Solar Thermal Electricity potential methodologies. Energy Convers Manag 126:42–50.  https://doi.org/10.1016/j.enconman.2016.07.070CrossRefGoogle Scholar
  7. NIMA (1997) Department of defense world geodetic system 1984, its definition and relationships with local geodetic systems. Technical Report TR8350.2 3rd ednGoogle Scholar
  8. Omitaomu OA, Blevins BR, Jochem WC et al (2012) Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl Energy 96:292–301CrossRefGoogle Scholar
  9. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644.  https://doi.org/10.5194/hess-11-1633-2007CrossRefGoogle Scholar
  10. Polo J (2015) Solar global horizontal and direct normal irradiation maps in Spain derived from geostationary satellites. J Atmos Solar Terr Phys 130–131:81–88.  https://doi.org/10.1016/j.jastp.2015.05.015CrossRefGoogle Scholar
  11. Polo J, Bernardos A, Navarro AAA et al (2015a) Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Convers Manag 98:348–358.  https://doi.org/10.1016/j.enconman.2015.04.016CrossRefGoogle Scholar
  12. Polo J, Gastón M, Vindel JMM, Pagola I (2015b) Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements. Renew Sustain Energy Rev 42:1326–1334.  https://doi.org/10.1016/j.rser.2014.11.014CrossRefGoogle Scholar
  13. Trauth MH (2010) MATLAB® Recipes for earth sciences, 3rd edn. SpringerGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Photovoltaic Solar Energy Unit, Renewable Energy Division (Energy Department)CIEMATMadridSpain
  2. 2.Qatar Environment & Energy Research Institute, Hamad Bin Khalifa UniversityDohaQatar

Personalised recommendations