Advertisement

Solar Resource Evaluation with Numerical Weather Prediction Models

  • Pedro A. JiménezEmail author
  • Jared A. Lee
  • Branko Kosovic
  • Sue Ellen Haupt
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The use of numerical weather prediction (NWP) models for solar resource evaluation is examined. The theory behind NWP models is described highlighting relevant components for solar energy applications as well as how to use NWP models for mapping the solar resource at the regional scale. Future perspectives are briefly outlined.

References

  1. Alapaty K, Herwehe JA, Otte TL, Nolte CG, Bullock OR, Mallard MS, Dudhia J (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys Res Lett.  https://doi.org/10.1029/2012GL054031CrossRefGoogle Scholar
  2. Anderson JL (2001) An ensemble adjustment Kalman Filter for data assimilation. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2001)129%3c2884:AEAKFF%3e2.0.CO;2CrossRefGoogle Scholar
  3. Anderson J, Hoar T, Raeder K, Liu H, Collins N, Torn R, Avellano A (2009) The data assimilation research testbed a community facility. Bull Am Meteorol Soc.  https://doi.org/10.1175/2009BAMS2618.1CrossRefGoogle Scholar
  4. Anthes RA, Warner TT (1974) Prediction of mesoscale flows over complex terrain. Retrieved from http://www.dtic.mil/docs/citations/AD0776333
  5. Anthes RA, Warner TT (1978) Development of hydrodynamic models suitable for air pollution and other mesometerological studies. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1978)106%3c1045:DOHMSF%3e2.0.CO;2CrossRefGoogle Scholar
  6. Armstrong MA (2000) Comparison of MM5 forecast shortwave radiation with data obtained from the atmospheric radiation measurement program. University of Maryland. Retrieved from https://www.atmos.umd.edu/~bobe/downloads/armstrong.pdf
  7. Auligné T, Auligné T (2014a) Multivariate minimum residual method for cloud retrieval. Part I: theoretical aspects and simulated observation experiments. Mon Weather Rev 142(12):4383–4398  https://doi.org/10.1175/MWR-D-13-00172.1CrossRefGoogle Scholar
  8. Auligné T, Auligné T (2014b) Multivariate minimum residual method for cloud retrieval. Part II: real observations experiments. Mon Weather Rev 142(12):4399–4415  https://doi.org/10.1175/MWR-D-13-00173.1CrossRefGoogle Scholar
  9. Bannister RN (2017) A review of operational methods of variational and ensemble-variational data assimilation. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.2982CrossRefGoogle Scholar
  10. Bayler GM, Aune RM, Raymond WH, Bayler GM, Aune RM, Raymond WH (2000) NWP cloud initialization using GOES sounder data and improved modeling of nonprecipitating clouds. Mon Weather Rev 128(11):3911–3920.  https://doi.org/10.1175/1520-0493(2001)129%3c3911:NCIUGS%3e2.0.CO;2CrossRefGoogle Scholar
  11. Beljaars A, Bechtold P, Köhler M, Morcrette J-J, Tompkins AM, Viterbo P, Wedi N (2004) The numerics of physical parameterization. In: Seminar on recent developments in numerical methods for atmospheric and ocean modelling, 6–10 September 2004. ECMWF, Shinfield Park, Reading, pp 113–134Google Scholar
  12. Berg LK, Gustafson WI, Kassianov EI, Deng L (2013) Evaluation of a modified scheme for shallow convection: implementation of CuP and case studies. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-12-00136.1CrossRefGoogle Scholar
  13. Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman Filter. Part I: theoretical aspects. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2001)129%3c0420:ASWTET%3e2.0.CO;2CrossRefGoogle Scholar
  14. Blanc P, Gschwind B, Lefèvre M, Wald L (2011) The HelioClim project: surface solar irradiance data for climate applications. Remote Sens.  https://doi.org/10.3390/rs3020343CrossRefGoogle Scholar
  15. Brdar S, Baldauf M, Dedner A, Klöfkorn R (2013) Comparison of dynamical cores for NWP models: comparison of COSMO and Dune. Theor Comput Fluid Dyn.  https://doi.org/10.1007/s00162-012-0264-zCrossRefGoogle Scholar
  16. Caya A, Laprise R, Zwack P, Caya A, Laprise R, Zwack P (1998) Consequences of using the splitting method for implementing physical forcings in a semi-implicit semi-Lagrangian model. Mon Weather Rev 126(6):1707–1713.  https://doi.org/10.1175/1520-0493(1998)126%3c1707:COUTSM%3e2.0.CO;2CrossRefGoogle Scholar
  17. Charabi Y, Gastli A, Al-Yahyai S (2016) Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model. Energy Rep.  https://doi.org/10.1016/j.egyr.2016.05.001CrossRefGoogle Scholar
  18. Chen Y, Wang H, Min J, Huang X-Y, Minnis P, Zhang R, Palikonda R (2015) Variational assimilation of cloud liquid/ice water path and its impact on NWP. J Appl Meteorol Climatol 54(8):1809–1825.  https://doi.org/10.1175/JAMC-D-14-0243.1CrossRefGoogle Scholar
  19. Chin M, Rood RB, Lin SJ, Müller JF and Thompson AM (2000) Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties. J Geophys Res Atmos.  https://doi.org/10.1029/2000JD900384CrossRefGoogle Scholar
  20. Clifton A, Hodge B-M, Draxl C, Badger J, Habte A (2018) Wind and solar resource data sets. Wiley Interdisc Rev Energy Environ 7(2):e276.  https://doi.org/10.1002/wene.276CrossRefGoogle Scholar
  21. Cressman GP (1959) An operational objective analysis system. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1959)087%3c0367:AOOAS%3e2.0.CO;2CrossRefGoogle Scholar
  22. de Haan S, van der Veen SH, de Haan S, van der Veen SH (2014) Cloud initialization in the rapid update cycle of HIRLAM. Weather Forecast 29(5):1120–1133.  https://doi.org/10.1175/WAF-D-13-00071.1CrossRefGoogle Scholar
  23. Deng A, Stauffer DR, Dudhia J, Otte TL, Hunter GK (2007) Update on analysis nudging Fdda in Wrf-arw. National Center for Atmospheric Research, Boulder, CO. 4.8: 8th WRF users’ workshop. Retrieved from http://www2.mmm.ucar.edu/wrf/users/workshops/WS2007/abstracts/4-8_Deng.pdf
  24. Deng A, Stauffer D, Gaudet B, Dudhia J, Bruyere C, Wu W, Bourgeois A (2009) Update on WRF-ARW end-to-end multi-scale FDDA system. National Center for Atmospheric Research, Boulder, CO. 1.9: 10th WRF users’ workshop. Retrieved from http://www2.mmm.ucar.edu/wrf/users/workshops/WS2009/WorkshopPapers.php
  25. Deng A, Gaudet BJ, Dudhia J, Alapaty K (2014) Implementation and evaluation of a new shallow convection scheme in WRF. In: 26th Conference on weather analysis and forecasting/22nd conference numerical weather prediction. American Society, Atlanta, GA, p 25. Retrieved from https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html
  26. Descombes G, Auligné T, Lin H-C, Xu D, Schwartz C, Vandenberghe F (2014) NCAR technical notes multi-sensor advection diffusion nowCast (MADCast) for cloud analysis and short-term prediction. Retrieved from http://library.ucar.edu/research/publish-technote
  27. Diagne M, David M, Boland J, Schmutz N, Lauret P (2014) Post-processing of solar irradiance forecasts from WRF model at Reunion Island. Sol Energy 105(0):99–108.  https://doi.org/10.1016/j.solener.2014.03.016CrossRefGoogle Scholar
  28. Dubal M, Wood N, Staniforth A (2004) Analysis of parallel versus sequential splittings for time-stepping physical parameterizations. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2004)131%3c0121:AOPVSS%3e2.0.CO;2CrossRefGoogle Scholar
  29. Dubal M, Wood N, Staniforth A (2006) Some numerical properties of approaches to physics-dynamics coupling for NWP. Q J R Meteorol Soc.  https://doi.org/10.1256/qj.05.49CrossRefGoogle Scholar
  30. Dutton JA, James RP, Ross JD (2018) Probabilistic forecasts for energy: weeks to a century or more. In: Troccoli A (ed) Weather & climate services for the energy industry, UK Palgrave Macmillan, Cham, London, pp 161–177.  https://doi.org/10.1007/978-3-319-68418-5_12CrossRefGoogle Scholar
  31. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res.  https://doi.org/10.1029/94JC00572CrossRefGoogle Scholar
  32. Fast JD, Gustafson WI, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Peckham SE (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res Atmos.  https://doi.org/10.1029/2005JD006721
  33. Fountoukis C, Martín-pomares L, Perez-astudillo D, Bachour D, Gladich I (2018) Simulating global horizontal irradiance in the Arabian Peninsula: sensitivity to explicit treatment of aerosols. Sol Energy 163:347–355.  https://doi.org/10.1016/j.solener.2018.02.001CrossRefGoogle Scholar
  34. Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Zhao B (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim.  https://doi.org/10.1175/JCLI-D-16-0758.1CrossRefGoogle Scholar
  35. Glahn HR, Lowry DA (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211CrossRefGoogle Scholar
  36. GOES-R (2018) Instruments: advanced baseline imager (ABI). Retrieved 14 April 2018, from https://www.goes-r.gov/spacesegment/abi.html
  37. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ.  https://doi.org/10.1016/j.atmosenv.2005.04.027CrossRefGoogle Scholar
  38. Gross M, Malardel S, Jablonowski C, Wood N, Gross M, Malardel S, Wood N (2016) Bridging the (knowledge) gap between physics and dynamics. Bull Am Meteor Soc 97(1):137–142.  https://doi.org/10.1175/BAMS-D-15-00103.1CrossRefGoogle Scholar
  39. Gross M, Wan H, Rasch PJ, Caldwell PM, Williamson DL, Klocke D, Leung R (2017) Recent progress and review of issues related to physics dynamics coupling in geophysical models.  https://doi.org/10.1175/MWR-D-17-0345.1CrossRefGoogle Scholar
  40. Habte A, Sengupta M, Lopez A (2017) Evaluation of the National Solar Radiation Database (NSRDB): 1998–2015. Technical Report TP-5D00-67722 (April), pp 1–38. Retrieved from http://www.nrel.gov/docs/fy17osti/67722.pdf
  41. Haupt SE, Copeland J, Cheng WYY, Zhang Y, Ammann C, Sullivan P, Sullivan P (2016a) A method to assess the wind and solar resource and to quantify interannual variability over the united states under current and projected future climate. J Appl Meteorol Climatol 55(2):345–363.  https://doi.org/10.1175/JAMC-D-15-0011.1CrossRefGoogle Scholar
  42. Haupt SE, Kosovic B, Jensen L, Lee J, Jimenez Munoz P, Lazo K, Hinkleman L (2016b) The Sun4Cast® solar power forecasting system: the result of the public-private-academic partnership to advance solar power forecasting.  https://doi.org/10.5065/D6N58JR2
  43. Haupt SE, Jiménez PA, Lee JA, Kosović B (2017) Principles of meteorology and numerical weather prediction. In: Kariniotakis G (ed) Renewable energy forecasting: from models to applications, Woodhead Publishing (Elsevier), Cambridge, MA, pp 3–28.  https://doi.org/10.1016/B978-0-08-100504-0.00001-9CrossRefGoogle Scholar
  44. Haupt SE, Kosović B, Jensen T, Lazo JK, Lee JA, Jiménez PA, Heiser J (2018) Building the Sun4Cast system: improvements in solar power forecasting. Bull Amer Meteorol Soc 99:121–135.  https://doi.org/10.1175/BAMS-D-16-0221.1CrossRefGoogle Scholar
  45. Haupt SE, Kosović B, Lee JA, Jiménez PA (2018b) Mesoscale modeling of the atmosphere. In: Veers P (ed) Wind power modelling: atmosphere and wind plant flow, IET Publishing, Stevenage, UKGoogle Scholar
  46. Herwehe JA, Alapaty K, Spero TL, Nolte CG (2014) Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J Geophys Res.  https://doi.org/10.1002/2014JD021504Google Scholar
  47. Hoke JE, Anthes RA (1976) The initialization of numerical models by a dynamic-initialization technique. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1976)104%3c1551:TIONMB%3e2.0.CO;2CrossRefGoogle Scholar
  48. Houtekamer PL, Zhang F (2016) Review of the ensemble Kalman Filter for atmospheric data assimilation. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-15-0440.1CrossRefGoogle Scholar
  49. Jiménez PA, Alessandrini S, Haupt SE, Deng A, Kosovic B, Lee JA, Delle Monache L (2016a) The role of unresolved clouds on short-range global horizontal irradiance predictability. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-16-0104.1CrossRefGoogle Scholar
  50. Jiménez PA, Hacker JP, Dudhia J, Haupt SE, Ruiz-Arias JA, Gueymard CA, Deng A (2016b) WRF-SOLAR: description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-14-00279.1CrossRefGoogle Scholar
  51. Jonassen MO, Ólafsson H, Ágústsson H, Rögnvaldsson Ó, Reuder J (2012) improving high-resolution numerical weather simulations by assimilating data from an unmanned aerial system. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-11-00344.1CrossRefGoogle Scholar
  52. Jones TA, Stensrud DJ, Minnis P, Palikonda R (2013) Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-12-00238.1CrossRefGoogle Scholar
  53. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng.  https://doi.org/10.1115/1.3662552CrossRefGoogle Scholar
  54. Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng.  https://doi.org/10.1115/1.3658902MathSciNetCrossRefGoogle Scholar
  55. Kalnay E (2003) Atmospheric modeling, data assimilation, and predictability. Ann Phys.  https://doi.org/10.1256/00359000360683511
  56. Kay M, MacGill I (2014) Improving NWP forecasts for the wind energy sector. In: Troccoli A, Dubus L, Haupt SE (eds) Weather matters for energy, Springer, New York, NY, pp 413–428.  https://doi.org/10.1007/978-1-4614-9221-4_20CrossRefGoogle Scholar
  57. Klinker E, Rabier F, Kelly G, Mahfouf JF (2000) The ECMWF operational implementation of four-dimensional variational assimilation. III: experimental results and diagnostics with operational configuration. Q J R Meteorol Soc.  https://doi.org/10.1256/smsqj.56416CrossRefGoogle Scholar
  58. Köpken C, Kelly G, Thépaut J-N (2004) Assimilation of meteosat radiance data within the 4D-Var system at ECMWF: assimilation experiments and forecast impact. Q J R Meteorol Soc 130(601):2277–2292.  https://doi.org/10.1256/qj.02.230CrossRefGoogle Scholar
  59. Lander J, Hoskins BJ (1997) Believable scales and parameterizations in a spectral transform model. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1997)125%3c0292:BSAPIA%3e2.0.CO;2CrossRefGoogle Scholar
  60. Lara-Fanego V, Ruiz-Arias JA, Pozo-Vázquez D, Santos-Alamillos FJ, Tovar-Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in Andalusia (Southern Spain). Sol Energy 86(8):2200–2217.  https://doi.org/10.1016/j.solener.2011.02.014CrossRefGoogle Scholar
  61. Lee JA, Haupt SE, Jiménez PA, Rogers MA, Miller SD, McCandless TC (2017) Solar irradiance nowcasting case studies near sacramento. J Appl Meteorol Climatol.  https://doi.org/10.1175/JAMC-D-16-0183.1CrossRefGoogle Scholar
  62. Lei L, Stauffer DR, Deng A (2012) A hybrid nudging-ensemble Kalman filter approach to data assimilation in WRF/DART. Q J R Meteorol Soc 138(669):2066–2078.  https://doi.org/10.1002/qj.1939CrossRefGoogle Scholar
  63. Liu Y, Warner TT, Bowers JF, Carson LP, Chen F, Clough CA, Weingarten DS (2008) The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command. Part I: overview of the modeling system, the forecast products, and how the products are used. J Appl Meteorol Climatol.  https://doi.org/10.1175/2007JAMC1653.1CrossRefGoogle Scholar
  64. Lorenc AC, Bowler NE, Clayton AM, Pring SR, Fairbairn D (2015) Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-14-00195.1CrossRefGoogle Scholar
  65. Lorenz E, Kuhnert J, Heinemann D (2014) Overview on irradiance and photovoltaic power prediction. In: Troccoli A, Dubus L, Haupt SE (eds) Weather matters for energy, Springer, New York, NY, pp 429–454.  https://doi.org/10.1007/978-1-4614-9221-4_21CrossRefGoogle Scholar
  66. Mahoney WP, Parks K, Wiener G, Liu Y, Myers WL, Sun J, Haupt SE (2012) A wind power forecasting system to optimize grid integration. In: IEEE transactions on sustain energy.  https://doi.org/10.1109/TSTE.2012.2201758CrossRefGoogle Scholar
  67. Marquez R, Coimbra CFM (2011) Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Solar Energy 85(5):746–756.  https://doi.org/10.1016/j.solener.2011.01.007CrossRefGoogle Scholar
  68. Martinet P, Fourrié N, Guidard V, Rabier F, Montmerle T, Brunel P (2013) Towards the use of microphysical variables for the assimilation of cloud-affected infrared radiances. Q J R Mseteorol Soc.  https://doi.org/10.1002/qj.2046CrossRefGoogle Scholar
  69. Martins FR, Pereira EB, Abreu SL (2007) Satellite-derived solar resource maps for Brazil under SWERA project. Sol Energy.  https://doi.org/10.1016/j.solener.2006.07.009CrossRefGoogle Scholar
  70. Mathiesen P, Kleissl J (2011) Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol Energy.  https://doi.org/10.1016/j.solener.2011.02.013CrossRefGoogle Scholar
  71. Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res D Atmos 109(13):1–15.  https://doi.org/10.1029/2003JD004495CrossRefGoogle Scholar
  72. Miguez-Macho G, Stenchikov GL, Robock A, Miguez-Macho G, Stenchikov GL, Robock A (2005) Regional climate simulations over North America: interaction of local processes with improved large-scale flow. J Clim 18(8):1227–1246.  https://doi.org/10.1175/JCLI3369.1CrossRefGoogle Scholar
  73. Miller SD, Rogers MA, Haynes JM, Sengupta M, Heidinger AK (2018) Short-term solar irradiance forecasting via satellite/model coupling. Sol Energy 168:102–117.  https://doi.org/10.1016/J.SOLENER.2017.11.049CrossRefGoogle Scholar
  74. Munro R, Köpken C, Kelly G, Thépaut JN, Saunders R (2004) Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: data quality monitoring, bias correction and single-cycle experiments. Q J R Meteorol Soc.  https://doi.org/10.1256/qj.02.229CrossRefGoogle Scholar
  75. Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Clim.  https://doi.org/10.1175/JCLI-D-12-00048.1CrossRefGoogle Scholar
  76. Pan Y, Zhu K, Xue M, Wang X, Hu M, Benjamin SG, Whitaker JS (2014) A GSI-Based coupled EnSRF–En3DVar hybrid data assimilation system for the operational rapid refresh model: tests at a reduced resolution. Mon Weather Rev 142(10):3756–3780.  https://doi.org/10.1175/MWR-D-13-00242.1CrossRefGoogle Scholar
  77. Paquin-Ricard D, Jones C, Vaillancourt PA (2010) Using ARM observations to evaluate cloud and clear-sky radiation processes as simulated by the canadian regional climate model GEM. Mon Weather Rev.  https://doi.org/10.1175/2009MWR2745.1CrossRefGoogle Scholar
  78. Peng Z, Yu D, Huang D, Heiser J, Yoo S, Kalb P (2015) 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol Energy 118(0):496–519.  https://doi.org/10.1016/j.solener.2015.05.037CrossRefGoogle Scholar
  79. Powers JG, Klemp JB, Skamarock WC, Davis CA, Dudhia J, Gill DO, Duda MG (2017) The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-15-00308.1CrossRefGoogle Scholar
  80. Pryor SC, Barthelmie RJ, Kjellström E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn.  https://doi.org/10.1007/s00382-005-0072-xCrossRefGoogle Scholar
  81. Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res.  https://doi.org/10.1029/2008JD011416
  82. Rogers RE, Deng A, Stauffer DR, Gaudet BJ, Jia Y, Soong ST, Tanrikulu S (2013) Application of the weather research and forecasting model for air quality modeling in the San Francisco bay area. J Appl Meteorol Clim.  https://doi.org/10.1175/JAMC-D-12-0280.1CrossRefGoogle Scholar
  83. Ruiz-Arias JA, Dudhia J, Gueymard CA (2014) A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geoscientific Model Dev 7(3):1159–1174.  https://doi.org/10.5194/gmd-7-1159-2014CrossRefGoogle Scholar
  84. Ruiz-Arias JA, Arbizu-Barrena C, Santos-Alamillos FJ, Tovar-Pescador J, Pozo-Vázquez D (2016) Assessing the surface solar radiation budget in the WRF model: a spatiotemporal analysis of the bias and its causes. Mon Weather Rev.  https://doi.org/10.1175/MWR-D-15-0262.1CrossRefGoogle Scholar
  85. Schlatter TW (2000) Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works. J Atmos Sol Terr Phys.  https://doi.org/10.1016/S1364-6826(00)00096-1CrossRefGoogle Scholar
  86. Schraff C, Reich H, Rhodin A, Schomburg A, Stephan, K, Periáñez A, Potthast R (2016) Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Q J R Meteorol Soc.  https://doi.org/10.1002/qj.2748CrossRefGoogle Scholar
  87. Schwartz CS, Liu Z, Lin H-C, Cetola JD (2014) Assimilating aerosol observations with a “hybrid” variational-ensemble data assimilation system. J Geophys Res Atmos 119(7):4043–4069.  https://doi.org/10.1002/2013JD020937CrossRefGoogle Scholar
  88. Schwartz CS, Romine GS, Sobash RA, Fossell KR, Weisman ML (2015) NCAR’s experimental real-time convection-allowing ensemble prediction system. Weather Forecast.  https://doi.org/10.1175/WAF-D-15-0103.1CrossRefGoogle Scholar
  89. Skamarock WC, Klemp JB, Dudhi J, Gill DO, Barker DM, Duda MG, Powers JG (2008) A description of the advanced research WRF version 3. Technical report (June), p 113.  https://doi.org/10.5065/D6DZ069T
  90. Staniforth A, Wood N, Côté J (2002a) Analysis of the numerics of physics–dynamics coupling. Q J R Meteorol Soc 128(586):2779–2799.  https://doi.org/10.1256/qj.02.25CrossRefGoogle Scholar
  91. Staniforth A, Wood N, Côté J, Staniforth A, Wood N, Côté J (2002b) A simple comparison of four physics–dynamics coupling schemes. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2002)130%3c3129:ASCOFP%3e2.0.CO;2CrossRefGoogle Scholar
  92. Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather RevGoogle Scholar
  93. Stauffer DR, Seaman NL (1994) Multiscale four-dimensional data assimilation. J Appl Meteorol.  https://doi.org/10.1175/1520-0450(1994)033%3c0416:MFDDA%3e2.0.CO;2CrossRefGoogle Scholar
  94. Stauffer DR, Seaman NL, Binkowski FS (1991) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: effects of data assimilation within the planetary boundary layer. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1991)119%3c0734:UOFDDA%3e2.0.CO;2CrossRefGoogle Scholar
  95. Stengel M, Lindskog M, Undén P, Gustafsson N, Bennartz R (2010) An extended observation operator in HIRLAM 4D-VAR for the assimilation of cloud-affected satellite radiances. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.621CrossRefGoogle Scholar
  96. Stengel M, Lindskog M, Undén P, Gustafsson N (2013) The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.2102CrossRefGoogle Scholar
  97. Stensrud DJ (2011). Parameterization schemes: keys to understanding numerical weather prediction models.  https://doi.org/10.1017/CBO9780511812590
  98. Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(1989)117%3c1641:CACPSW%3e2.0.CO;2CrossRefGoogle Scholar
  99. Talagrand O (1997) Assimilation of observations, an introduction. J Meteorol Soc Jpn.  https://doi.org/10.1256/qj.02.132CrossRefGoogle Scholar
  100. Talagrand O, Courtier P (1987) Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.49711347812CrossRefGoogle Scholar
  101. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci.  https://doi.org/10.1175/JAS-D-13-0305.1CrossRefGoogle Scholar
  102. Thompson G, Tewari M, Ikeda K, Tessendorf S, Weeks C, Otkin J, Kong F (2016) Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmos Res.  https://doi.org/10.1016/j.atmosres.2015.09.005CrossRefGoogle Scholar
  103. Tuohy A, Zack J, Haupt SE, Sharp J, Ahlstrom M, Dise S, Collier C (2015) Solar forecasting: methods, challenges, and performance. IEEE Power Energy Magaz.  https://doi.org/10.1109/MPE.2015.2461351CrossRefGoogle Scholar
  104. van der Veen SH, van der Veen SH (2013) Improving NWP model cloud forecasts using meteosat second-generation imagery. Mon Weather Rev 141(5):1545–1557.  https://doi.org/10.1175/MWR-D-12-00021.1CrossRefGoogle Scholar
  105. Wang X, Barker DM, Snyder C, Hamill TM (2008a) A hybrid ETKF–3dvar data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon Weather Rev.  https://doi.org/10.1175/2008MWR2444.1CrossRefGoogle Scholar
  106. Wang X, Barker DM, Snyder C, Hamill TM (2008b) A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. Mon Weather Rev.  https://doi.org/10.1175/2008MWR2445.1CrossRefGoogle Scholar
  107. Warner TT (2011) Quality assurance in atmospheric modeling. Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-11-00054.1CrossRefGoogle Scholar
  108. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2002)130%3c1913:EDAWPO%3e2.0.CO;2CrossRefGoogle Scholar
  109. White AT, Pour-Biazar A, Doty K, Dornblaser B, McNider RT, White AT, McNider RT (2018) Improving cloud simulation for air quality studies through assimilation of geostationary satellite observations in retrospective meteorological modeling. Mon Weather Rev 146(1):29–48.  https://doi.org/10.1175/MWR-D-17-0139.1CrossRefGoogle Scholar
  110. Williamson DL (2002) Time-split versus process-split coupling of parameterizations and dynamical core. Mon Weather Rev.  https://doi.org/10.1175/1520-0493(2002)130%3c2024:TSVPSC%3e2.0.CO;2CrossRefGoogle Scholar
  111. Xie Y, Sengupta M, Dudhia J (2016) A fast all-sky radiation model for solar applications (FARMS): algorithm and performance evaluation. Eur Photovolt Sol Energy Conf 135:435–445.  https://doi.org/10.1016/j.solener.2016.06.003CrossRefGoogle Scholar
  112. Yang L, Lam JC, Liu J (2007) Analysis of typical meteorological years in different climates of China. Energy Convers Manage 48(2):654–668.  https://doi.org/10.1016/j.enconman.2006.05.016CrossRefGoogle Scholar
  113. Yang S-C, Corazza M, Carrassi A, Kalnay E, Miyoshi T (2009) Comparison of local ensemble transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic model. Mon Weather Rev.  https://doi.org/10.1175/2008MWR2396.1CrossRefGoogle Scholar
  114. Yang H, Kurtz B, Nguyen D, Urquhart B, Chow CW, Ghonima M, Kleissl J (2014) Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego. Sol Energy 103(0):502–524.  https://doi.org/10.1016/j.solener.2014.02.044CrossRefGoogle Scholar
  115. Yucel I, Shuttleworth WJ, Pinker RT, Lu L, Sorooshian S, Yucel I, Sorooshian S (2002) Impact of ingesting satellite-derived cloud cover into the regional atmospheric modeling system. Mon Weather Rev 130(3):610–628.  https://doi.org/10.1175/1520-0493(2002)130%3c0610:IOISDC%3e2.0.CO;2CrossRefGoogle Scholar
  116. Yucel I, James Shuttleworth W, Gao X, Sorooshian S (2003) Short-term performance of MM5 with cloud-cover assimilation from satellite observations. Mon Weather Rev.  https://doi.org/10.1175//2565.1CrossRefGoogle Scholar
  117. Zamora RJ, Dutton EG, Trainer M, McKeen SA, Wilczak JM, Hou Y-T (2005) The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon Weather Rev.  https://doi.org/10.1175/MWR2886.1CrossRefGoogle Scholar
  118. Zhang F, Zhang M, Poterjoy J, Zhang F, Zhang M, Poterjoy J (2013) E3DVar: coupling an ensemble Kalman Filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon Weather Rev 141(3):900–917.  https://doi.org/10.1175/MWR-D-12-00075.1CrossRefGoogle Scholar
  119. Zhang J, Draxl C, Hopson T, Monache LD, Vanvyve E, Hodge BM (2015) Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy.  https://doi.org/10.1016/j.apenergy.2015.07.059CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro A. Jiménez
    • 1
    Email author
  • Jared A. Lee
    • 1
  • Branko Kosovic
    • 1
  • Sue Ellen Haupt
    • 1
  1. 1.Research Applications LaboratoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations