Advertisement

Solar Radiation Modeling from Satellite Imagery

  • Jesús PoloEmail author
  • Richard Perez
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Satellites have been observing the earth-atmosphere system and delivering data since the 1960s. They constitute a crucial tool for observing, measuring, and understanding meteorological phenomena and radiative transfer budgets. Satellite observations are usually incorporated into numerical weather predictions (NWP) models, via data assimilation algorithms, to produce the best estimate of the atmospheric state and to improve weather forecasting. In the field of solar radiation, satellite imagery provides effective information since onboard sensors actually measure the incoming radiance form the earth-atmosphere system. The radiance received by satellites is related to solar radiation incident at the earth’s surface since it results from the different interactions of the sun’s radiation with the earth-atmosphere system—scattering, absorption, and reflection. Therefore, it is reasonable to design methods and algorithms to infer surface solar irradiance from the radiance received by the satellites’ onboard instruments. The first algorithms were developed in the 1980s. They have significantly evolved since and have reached a high degree of maturity and accuracy thanks to continuous developments and improvements both in the methods and in onboard radiometric instrumentations (in particular, spectral and geographical resolution). Every solar energy project requires an accurate knowledge of the local solar resource. Although the number and geographical density of ground-based solar radiation sensors are continuously increasing, they can only supply the needed solar resource information in a handful of locations. In consequence, most solar energy projects rely on solar irradiance time series simulated from satellite imagery. Satellite-derived information can be processed into many forms useful to the solar community, including solar radiation maps, typical meteorological (or representative) years, long-term characterization, and solar plant performance modeling. This chapter presents a state-of-the-art review of the modeling of surface solar irradiance from satellite images.

References

  1. Amillo A, Huld T, Müller R (2014) A new database of global and direct solar radiation using the eastern meteosat satellite, models and validation. Remote Sens 6:8165–8189.  https://doi.org/10.3390/rs6098165CrossRefGoogle Scholar
  2. Beyer HG, Costanzo C, Heinemann D (1996) Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol Energy 56:207–212.  https://doi.org/10.1016/0038-092X(95)00092-6CrossRefGoogle Scholar
  3. Blanc P, Gschwind B, Evre M, Wald L (2014) Twelve monthly maps of ground albedo parameters derived from MODIS data sets. IGARSS 2014, Jul 2014. Quebec, Canada, pp 3270–3272Google Scholar
  4. Cano D, Monget JM, Albuisson M et al (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37:31–39.  https://doi.org/10.1016/0038-092X(86)90104-0CrossRefGoogle Scholar
  5. Cebecauer T, Suri M (2010) Accuracy improvements of satellite-derived solar resource based on GEMS re-analysis aerosols. In: Proceedings of the conference SolarPACES 2010 Perpignan, France, pp 1–4Google Scholar
  6. Cebecauer T, Suri M, Gueymard CA (2011) Uncertainty sources in satellite-derived direct normal irradiance: how can prediction accuracy be improved globally. In Proceedings of the SolarPACES 2011 conferenceGoogle Scholar
  7. Cros S, Albuisson M, Wald L (2006) Simulating Meteosat-7 broadband radiances using two visible channels of Meteosat-8. Sol Energy 80:361–367.  https://doi.org/10.1016/j.solener.2005.01.012CrossRefGoogle Scholar
  8. Dagestad K-F (2004) Mean bias deviation of the Heliosat algorithm for varying cloud properties and sun-ground-satellite geometry. Theor Appl Climatol 79:215–224CrossRefGoogle Scholar
  9. Dagestad K-F, Olseth JA (2007) A modified algorithm for calculating the cloud index. Sol Energy 81:280–289.  https://doi.org/10.1016/j.solener.2005.12.010CrossRefGoogle Scholar
  10. Diabaté L, Demarq H, Michaud-Regas N, Wald L (1987) Estimating incident solar radiation at the surface from images of the earth transmitted by geostationary satellites: the Heliosat project. Int J Sol Energy 5:261–278.  https://doi.org/10.1080/01425918708914425CrossRefGoogle Scholar
  11. Diabaté L, Moussu G, Wald L (1989) Description of an operational tool for determining global solar radiation at ground using geostationary satellite images. Sol Energy 42:201–207.  https://doi.org/10.1016/0038-092X(89)90012-1CrossRefGoogle Scholar
  12. Djebbar R, Morris R, Thevenard D et al (2012) Assessment of SUNY version 3 global horizontal and direct normal solar irradiance in Canada. Energy Procedia 30:1274–1283.  https://doi.org/10.1016/j.egypro.2012.11.140CrossRefGoogle Scholar
  13. Emde C, Buras-Schnell R, Kylling A et al (2015) The libRadtran software package for radiative transfer calculations (Version 2.0). Geosci Model Dev Discuss 8:10237–10303.  https://doi.org/10.5194/gmdd-8-10237-2015CrossRefGoogle Scholar
  14. Emde C, Buras-Schnell R, Kylling A, et al (2016) The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci Model Dev 9:1647–1672.  https://doi.org/10.5194/gmd-9-1647-2016CrossRefGoogle Scholar
  15. Escobar RA, Cortés C, Pino A et al (2014) Solar energy resource assessment in Chile: satellite estimation and ground station measurements. Renew Energy 71:324–332CrossRefGoogle Scholar
  16. Gautier C, Diak G, Masse S et al (1980) A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J Appl Meteorol 19:1005–1012.  https://doi.org/10.1175/1520-0450(1980)019%3c1005:ASPMTE%3e2.0.CO;2CrossRefGoogle Scholar
  17. Hammer A, Heinemann D, Hoyer C et al (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86:423–432.  https://doi.org/10.1016/S0034-4257(03)00083-XCrossRefGoogle Scholar
  18. Huld T, Müller R, Gambardella A (2012) A new solar radiation database for estimating PV performance in Europe and Africa.  https://doi.org/10.1016/j.solener.2012.03.006CrossRefGoogle Scholar
  19. Ineichen P (2014) Satellite irradiance based on MACC aerosols : Helioclim 4 and SolarGIS, global and beam components validation. In: EuroSun 2014 conference proceedingsGoogle Scholar
  20. Ineichen P, Perez R (1999) Derivation of cloud index from geostationary satellites and application to the production of solar irradiance and daylight illuminance data. Theor Appl Climatol 64:119–130CrossRefGoogle Scholar
  21. Janjai S, Laksanaboonsong J, Nunez M, Thongsathitya A (2005) Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Sol Energy 78:739–751.  https://doi.org/10.1016/j.solener.2004.09.009CrossRefGoogle Scholar
  22. Janjai S, Masiri I, Laksanaboonsong J (2013) Satellite-derived solar resource maps for Myanmar. Renew Energy 53:132–140.  https://doi.org/10.1016/j.renene.2012.11.014CrossRefGoogle Scholar
  23. Janjai S, Pankaew P, Laksanaboonsong J, Kitichantaropas P (2011) Estimation of solar radiation over Cambodia from long-term satellite data. Renew Energy 36:1214–1220.  https://doi.org/10.1016/j.renene.2010.09.023CrossRefGoogle Scholar
  24. Janssen LLF, Huurneman GC (2001) Principles of remote sensing an introductory textbook. ISBN 90–6164–199–3 ITC, Enschede, The NetherlandsGoogle Scholar
  25. Johannes S (1989) Towards a surface radiation climatology: retrieval of downward irradiances from satellites. Atmos Res 23:287–321.  https://doi.org/10.1016/0169-8095(89)90023-9CrossRefGoogle Scholar
  26. Kriebel KT, Gesell G, Kästner M, Mannstein H (2003) The cloud analysis tool APOLLO: improvements and validations. Int J Remote Sens 24:2389–2408.  https://doi.org/10.1080/01431160210163065CrossRefGoogle Scholar
  27. Lefèvre M, Oumbe A, Blanc P et al (2013) McClear : a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos Meas Tech 6:2403–2418.  https://doi.org/10.5194/amt-6-2403-2013CrossRefGoogle Scholar
  28. Martins FR, Pereira EB, Abreu SL (2007) Satellite-derived solar resource maps for Brazil under SWERA project. Sol Energy 81:517–528.  https://doi.org/10.1016/j.solener.2006.07.009CrossRefGoogle Scholar
  29. Martins FR, Pereira EB, Abreu SL, et al (2003) Cross validation of satellite radiation transfer models during SWERA project in Brazil. In: Proceedings of the ISES solar world congressGoogle Scholar
  30. Merrouni AA, Ghennioui A, Wolfertstetter F, Mezrhab A (2017) The uncertainty of the HelioClim-3 DNI data under Moroccan climate. In: AIP Conference proceedings 1850:140002–140011.  https://doi.org/10.1063/1.4984519
  31. Moser W, Raschke E (1984) Incident solar radiation over Europe estimated from METEOSAT data. J Clim Appl Meteorol 23:166–170CrossRefGoogle Scholar
  32. Mueller RW, Dagestad KF, Ineichen P et al (2004) Rethinking satellite-based solar irradiance modelling: the SOLIS clear-sky module. Remote Sens Environ 91:160–174.  https://doi.org/10.1016/j.rse.2004.02.009CrossRefGoogle Scholar
  33. Mueller RW, Matsoukas C, Gratzki A et al (2009) The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—a LUT based eigenvector hybrid approach. Remote Sens Environ 113:1012–1024.  https://doi.org/10.1016/j.rse.2009.01.012CrossRefGoogle Scholar
  34. Müller R, Pfeifroth U, Träger-Chatterjee C et al (2015a) Surface solar radiation data set-heliosat (SARAH)-edition 1. Satellite application facility on climate monitoringGoogle Scholar
  35. Müller R, Pfeifroth U, Träger-Chatterjee C et al (2015b) Digging the METEOSAT treasure—3 decades of solar surface radiation. Remote Sens 7:8067–8101.  https://doi.org/10.3390/rs70608067CrossRefGoogle Scholar
  36. Noia M, Ratto CF, Festa R (1993a) Solar irradiance estimation from geostationary satellite data: II physical models. Sol Energy 51:457–465CrossRefGoogle Scholar
  37. Noia M, Ratto CF, Festa R (1993b) Solar irradiance estimation from geostationary satellite data: I statistical models. Sol Energy 51:449–456CrossRefGoogle Scholar
  38. Nunez M (1993) The development of a satellite-based insolation model for the tropical western Pacific Ocean. Int J Climatol 13:607–627.  https://doi.org/10.1002/joc.3370130603CrossRefGoogle Scholar
  39. Perez R (2002) Time specific irradiances derived from geostationary satellite images. J Sol Energy Eng 124:2012CrossRefGoogle Scholar
  40. Perez R, Cebecauer T, Šúri M (2013) Chapter 2—Semi-empirical satellite models. In: Kleiss J (ed) Solar energy forecasting and resource assessment, pp 21–48CrossRefGoogle Scholar
  41. Perez R, Ineichen P, Kmiecik M et al (2004) Producing satellite-derived irradiances in complex arid terrain. Sol Energy 77:367–371.  https://doi.org/10.1016/j.solener.2003.12.016CrossRefGoogle Scholar
  42. Perez R, Ineichen P, Moore K et al (2002) A new operational model for satellite-derived irradiances: description and validation. Sol Energy 73:307–317.  https://doi.org/10.1016/S0038-092X(02)00122-6CrossRefGoogle Scholar
  43. Perez R, Schlemmer J, Hemker K et al (2015) Satellite-to-irradiance modeling–a new version of the SUNY model. In: Proceedings of the 42nd IEEE photovoltaic specialist conference, at New Orleans, LAGoogle Scholar
  44. Perez R, Schlemmer J, Kankiewicz A et al (2017) Detecting calibration drift at reference ground truth stations-A demonstration of satellite irradiance model’s accuracy. In: Proceedings of the IEEE PVSC-44, Washington, DCGoogle Scholar
  45. Perez R, Schlemmer J, Renne D et al (2009) Validation of the suny satellite model in a meteosat environment. In: Proceedings of the American solar energy society annual conference ASES Annua:Google Scholar
  46. Pfeifroth U, Kothe S, Müller R et al (2017) Surface radiation data set - Heliosat (SARAH)-Edition 2.  https://doi.org/10.5676/eum_saf_cm/sarah/v002
  47. Pinker RT (1985) Determination of surface albedo from satellites. Adv. Sp. Res. 5:333–343CrossRefGoogle Scholar
  48. Pinker RT, Laszlo I (1991) Effects of spatial sampling of satellite data on derived surface solar irradiance. J Atmos Ocean Technol 8:96–107CrossRefGoogle Scholar
  49. Polo J, Antonanzas-Torres F, Vindel JMM, Ramirez L (2014) Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models. Renew Energ 68:785–92. http://dx.doi.org/10.1016/j.renene.2014.03.022CrossRefGoogle Scholar
  50. Polo J, Martín L, Cony M (2012) Revision of ground albedo estimation in Heliosat scheme for deriving solar radiation from SEVIRI HRV channel of Meteosat satellite. Sol Energy 86:275–282.  https://doi.org/10.1016/j.solener.2011.09.030CrossRefGoogle Scholar
  51. Polo J, Martín L, Vindel JM (2015) Correcting satellite derived DNI with systematic and seasonal deviations: application to India. Renew energy 80:238–243.  https://doi.org/10.1016/j.renene.2015.02.031CrossRefGoogle Scholar
  52. Polo J, Vindel JM, Martín L (2013) Angular dependence of the albedo estimated in models for solar radiation derived from geostationary satellites. Sol Energy 93:256–266.  https://doi.org/10.1016/j.solener.2013.04.019CrossRefGoogle Scholar
  53. Polo J, Wilbert S, Ruiz-Arias JA et al (2016) Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Sol Energy 132:25–37.  https://doi.org/10.1016/j.solener.2016.03.001CrossRefGoogle Scholar
  54. Polo J, Zarzalejo LF, Ramírez L (2008) Solar radiation derived from Satellite images. In: Badescu V (ed) Modeling solar radiation at the earth’s surface: recent advances. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 449–461CrossRefGoogle Scholar
  55. Posselt R, Mueller RW, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring — the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198.  https://doi.org/10.1016/j.rse.2011.11.016CrossRefGoogle Scholar
  56. Qu Z, Oumbe A, Blanc P et al (2017) Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorol Zeitschrift 26:33–57.  https://doi.org/10.1127/metz/2016/0781CrossRefGoogle Scholar
  57. Rigollier C, Lefèvre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77:159–169.  https://doi.org/10.1016/j.solener.2004.04.017CrossRefGoogle Scholar
  58. Riihelä A, Carlund T, Trentmann J et al (2015) Validation of CM SAF surface solar radiation datasets over Finland and Sweden. Remote Sens 7:6663–6682.  https://doi.org/10.3390/rs70606663CrossRefGoogle Scholar
  59. Sanchez-Lorenzo A, Wild M, Trentmann J (2013) Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983–2005). Remote Sens Environ 134:355–366.  https://doi.org/10.1016/j.rse.2013.03.012CrossRefGoogle Scholar
  60. Schillings C, Mannstein H, Meyer R, Mannstein H (2004) Validation of a method for deriving high resolution direct normal irradiance from satellite data and application for the Arabian Peninsula. Sol Energy 76:485–497.  https://doi.org/10.1016/j.solener.2003.07.037CrossRefGoogle Scholar
  61. Sengupta M, Habte A, Gueymard C, Wilbert S, Renné D (2017) Best practices handbook for the collection and use of solar resource data for solar energy applications, 2nd edn. https://doi.org/10.18777/ieashc-task46-2015-0001
  62. Tarpley JD (1979) Estimating incident solar radiation at the surface from geostationary satellite data. J Appl Meteorol 18:1172–1181.  https://doi.org/10.1175/1520-0450(1979)018%3c1172:EISRAT%3e2.0.CO;2CrossRefGoogle Scholar
  63. Wang P, Stammes P, Mueller R (2011) Surface solar irradiance from SCIAMACHY measurements: algorithm and validation. Atmos Meas Tech 4:875–891.  https://doi.org/10.5194/amt-4-875-2011CrossRefGoogle Scholar
  64. Weymouth GT, Le Marschall JF (2001) Estimate of daily surface solar exposure using GMS-5 stretched-VISSR observations: the system and basic results. Aust Meteorol Mag 50:263–278Google Scholar
  65. Žák M, Mikšovský J, Pišoft P (2015) CMSAF radiation data: new possibilities for climatological applications in the Czech republic. Remote Sens 7:14445–14457.  https://doi.org/10.3390/rs71114445CrossRefGoogle Scholar
  66. Zarzalejo LF, Polo J, Martín L et al (2009) A new statistical approach for deriving global solar radiation from satellite images. Sol Energy 83:480–484.  https://doi.org/10.1016/j.solener.2008.09.006CrossRefGoogle Scholar
  67. Zelenka A, Perez R, Seals R, Renne D (1999) Effective accuracy of satellite-derived hourly irradiances. Theor Appl Climatol 62:199–207.  https://doi.org/10.1007/s007040050084CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Photovoltaic Solar Energy Unit, Renewable Energy Division (Energy Department) of CIEMATMadridSpain
  2. 2.Atmospheric Science Research Center, State University of New YorkAlbanyUSA

Personalised recommendations