Advertisement

Solar Radiation Measurement and Solar Radiometers

  • José L. BalenzateguiEmail author
  • Fernando Fabero
  • José P. Silva
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

An instrument able to measure electromagnetic radiation, in its different forms and spectral ranges, is called a radiometer. This chapter focuses on the radiometers used for sensing solar radiation and on the measurements of different components and types of solar irradiance. As a simple classification, we will distinguish between broadband and spectral (narrowband) sensors. First, the fundamentals of physical sensors used to measure solar radiation are briefly described. Then, importance about calibration methods and uncertainty, as well as the structure of the traceability chain in the magnitude of solar irradiance, are presented. Next, solar radiometers and measurement techniques are described, starting from direct radiation in Earth’s surface, global irradiance in horizontal and tilted surfaces, diffuse irradiance, and finally another kind of radiation sensor. This structure is not casual but follows a path similar to that of the traceability chain, starting from the more accurate to the less accurate instruments. There are two additional sections devoted to the measurement of the spectral distribution of irradiance and to the measurement of aerosol contents in the atmosphere by using filter radiometers.

Notes

Acknowledgements

This work has been partially supported by the Spanish National Funding Program for Scientific and Technical Research of Excellence, Generation of Knowledge Subprogram, 2017 call, DEPRISACR project (reference CGL2017-87299-P). The authors also wish to thank Dr. Stefan Wilbert from DLR for sharing several useful comments and remarks on this chapter.

References

  1. Abbot CG (1913) Standard water-stir pyrheliometer no. 4. Ann Astro-physical Obs Smithson Inst 3:21–49Google Scholar
  2. Abbot CG, Aldrich LB (1913) Smithsonian pyrheliometry revised. Smithson Misc Collect 60Google Scholar
  3. Abbot CG, Fowle FE (1908) Chapter 2, Apparatus for solar constant determinations. Ann Astrophys Obs Smithson Inst 2:21–49Google Scholar
  4. Ångström K (1894) The quantitative determination of radiant heat by the method of electrical compensation. Phys Rev (Series I) 1:365–372.  https://doi.org/10.1103/physrevseriesi.1.365CrossRefGoogle Scholar
  5. Angström K (1899) The absolute determination of the radiation of heat with the electric compensation pyrheliometer, with examples of application of this instrument. Astrophys J 9:332–346Google Scholar
  6. ASTM E1125-99 Standard (2009) Standard test method for calibration of primary non-concentrator terrestrial photovoltaic reference cells using a tabular spectrum. ASTM International, West Conshohocken, PA, 2016. www.astm.org. This Standard (1999) is currently superseded by a new versio
  7. Batlles FJ, Olmo FJ, Alados-Arboledas L (1995) On shadowband correction methods for diffuse irradiance measurements. Sol Energy.  https://doi.org/10.1016/0038-092x(94)00115-tCrossRefGoogle Scholar
  8. BIPM (2018) Information provided by Bureau International des Poids and measures in the webpage. https://www.bipm.org/en/cipm-mra/. Accessed 12 Jul 2018
  9. Bird RE, Hulstrom RL, Kliman AW, Eldering HG (1982) Solar spectral measurements in the terrestrial environment. Appl Opt 21:1430–1436CrossRefGoogle Scholar
  10. Blanc P, Espinar B, Geuder N et al (2014) Direct normal irradiance related definitions and applications: the circumsolar issue. Sol Energy 110:561–577.  https://doi.org/10.1016/j.solener.2014.10.001CrossRefGoogle Scholar
  11. Brusa RW, Fröhlich C (1975) Realization of the absolute scale of total irradiance. Scientific discussions. International pyrheliometer comparisons IPC-IV, DavosGoogle Scholar
  12. BSRN (2018) World Radiation Monitoring Center (WRMC). Central archive of the BSRN. https://bsrn.awi.de/
  13. Buie D, Monger AG (2004) The effect of circumsolar radiation on a solar concentrating system. Sol Energy.  https://doi.org/10.1016/j.solener.2003.07.032CrossRefGoogle Scholar
  14. Bush BC, Valero FPJ, Simpson AS, Bignone L (2000) Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation. J Atmos Ocean Tech.  https://doi.org/10.1175/1520-0426(2000)017%3c0165:coteip%3e2.0.co;2CrossRefGoogle Scholar
  15. Callendar HL, Fowler A (1906) The horizontal bolometer. In: Royal society series A. 77. pp 15–16Google Scholar
  16. CIMO (2017) Part I, Chapter 7 for solar radiation measurements. Part I, Chapter 16 for aerosols measurements. In: The CIMO guide. World Meteorological Organization. WMO guide to meteorological instruments and methods of observation (WMO-No. 8, 2014 edition, updated in 2017)Google Scholar
  17. Coulson KL (1975) Solar terrestrial radiations. Methods and measurements. Academic Press, New YorkGoogle Scholar
  18. Crommelynck D (1973) Theorie instrumentale en radiometrie absolue. Pub Ser A, No. 81Google Scholar
  19. Crookes W (1874) On attraction and repulsion resulting from radiation. Philos Trans R Soc Lond 164:501–527CrossRefGoogle Scholar
  20. Dutton EG (2002) Report on GEWES Baseline Surface Radiation Network (BSRN). Global energy and water cycle experimentGoogle Scholar
  21. Earth Observatory (2018) EOS project science office at NASA Goddard Space Flight Center. Global maps. Aerosol optical depth. https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD. Accessed 28 Aug 2018
  22. Emery KA, Soterwald CR, Kazmerski LL, Hart RE (1988) Calibration of primary terrestrial reference cells when compared with primary AM0 reference cells. In: 8th European PVSEC. pp 64–68Google Scholar
  23. Estellés V, Utrillas MP, Martínez-Lozano JA et al (2006) Intercomparison of spectroradiometers and sun photometers for the determination of the aerosol optical depth during the VELETA-2002 field campaign. J Geophys Res Atmos.  https://doi.org/10.1029/2005jd006047
  24. Fang W, Wang H, Li H, Wang Y (2014) Total solar irradiance monitor for Chinese FY-3A and FY-3B satellites—instrument design. Sol Phys.  https://doi.org/10.1007/s11207-014-0595-6CrossRefGoogle Scholar
  25. Fehlmann A, Kopp G, Schmutz W et al (2012) Fourth world radiometric reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance. Metrologia.  https://doi.org/10.1088/0026-1394/49/2/s34CrossRefGoogle Scholar
  26. Finsterle W (2011) WMO international pyrheliometer comparison (IPC-XI): final report. IOM report-no. 128Google Scholar
  27. Finsterle W (2015) Status and future of the WRR in the SI. Presentation at IPC-XII seminar, PMOD/WRC (Davos). Available at: ftp://ftp.pmodwrc.ch/stealth/ipcxii/Seminar/status_of_the_WRR.pdf
  28. Finsterle W (2016) International pyrheliometer comparison (IPC-XII): 28. Sep-16. Oct 2015. Final report. IOM report-no. 124. Davos, SwitzerlandGoogle Scholar
  29. Finsterle W, Blattner P, Moebus S et al (2008) Third comparison of the world radiometric reference and the SI radiometric scale. Metrologia.  https://doi.org/10.1088/0026-1394/45/4/001CrossRefGoogle Scholar
  30. Foote PD (1919) Some characteristics of the Marvin pyrheliometer. Sci Pap Bur Stand 605–635CrossRefGoogle Scholar
  31. Fox NP (2001) Developments in optical radiometry. In: Recent advances in metrology & fundamental constants, pp 537–571Google Scholar
  32. Fox NP, Rice JP (2005) Absolute radiometers. In: Optical radiometry. Series: experimental methods in the physical sciences, vol 51, pp 35–96Google Scholar
  33. Fox NP, Haycocks PR, Martin JE, Ul-Haq I (1995) A mechanically cooled portable cryogenic radiometer. Metrologia 32(6):581CrossRefGoogle Scholar
  34. Fröhlich C (1973) The relation between the IPS now in use and Smithsonian scale 1913, Angstrom scale and absolute scale. In: Symposium solar radiation measurements instrument, pp 61–77Google Scholar
  35. Fröhlich C (1978) World radiometric reference. WMO/CIMO final report, Annex IV, WMO no. 490Google Scholar
  36. Fröhlich C (1991) History of solar radiometry and the world radiometric reference. Metrologia.  https://doi.org/10.1088/0026-1394/28/3/001CrossRefGoogle Scholar
  37. Fröhlich C (2013) Solar radiometry. Observing photons in space. Springer, New York, pp 565–581CrossRefGoogle Scholar
  38. Frohlich C, London J (1986) Revised instruction manual on radiation instruments and measurements. Chapter 4. World Climate Research Programme (WCRP) publications series no. 7. WMO/TD—No. 149Google Scholar
  39. Fröhlich C, Crommelynck DA, Wehrli C et al (1997) In-flight performance of the VIRGO solar irradiance instruments on SOHO. The first results from SOHO. Springer, Netherlands, pp 267–286CrossRefGoogle Scholar
  40. GCOS (2011) Systematic observation requirements for satellite-based data products for climate (2011 Update). WMO/GCOS-154 reportGoogle Scholar
  41. GCOS (2016) The global observing system for climate: implementation needs. WMO/GCOS-200 reportGoogle Scholar
  42. Geist J (1972) Optical radiation measurements. Technical note 594-1. Washington, D.C., USAGoogle Scholar
  43. Golay MJE (1947a) A pneumatic infra-red detector. Rev Sci Instrum.  https://doi.org/10.1063/1.1740949CrossRefGoogle Scholar
  44. Golay MJE (1947b) Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector. Rev Sci Instrum 18(5):347–356CrossRefGoogle Scholar
  45. Gorczyński L (1924) On a simple method of recording the total and partial intensities of solar radiation. J Opt Soc Am 9:455.  https://doi.org/10.1364/josa.9.000455CrossRefGoogle Scholar
  46. Gueymard CA (1998) Turbidity determination from broadband irradiance measurements: a detailed multicoefficient approach. J Appl Meteorol.  https://doi.org/10.1175/1520-0450(1998)037%3c0414:tdfbim%3e2.0.co;2CrossRefGoogle Scholar
  47. Gueymard CA (2018) A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Sol Energy 168:2–9.  https://doi.org/10.1016/j.solener.2018.04.001CrossRefGoogle Scholar
  48. Gueymard CA, Wilcox SM (2011) Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Sol Energy.  https://doi.org/10.1016/j.solener.2011.02.030CrossRefGoogle Scholar
  49. Haeffelin M, Kato S, Smith AM et al (2001) Determination of the thermal offset of the Eppley precision spectral pyranometer. Appl Opt.  https://doi.org/10.1364/ao.40.000472CrossRefGoogle Scholar
  50. Haley F, Kendall JM. S, Plamondon J (1965) Cavity type radiometer for absolute total intensity measurement of visible and IR radiation. 11th National Aerospace Instrumentation Symposium. ISA Preprint 1(11):3–65Google Scholar
  51. Han LH, Wu S, Condit JC et al (2011) Light-powered micromotor: design, fabrication, and mathematical modeling. J Microelectromechanical Syst 20:487–496.  https://doi.org/10.1109/jmems.2011.2105249CrossRefGoogle Scholar
  52. Hegner H, Müller G, Nespor V et al (1998) Update of the technical plan for BSRN data, vol 3. pp 38Google Scholar
  53. Hengstberger F (1989) Absolute radiometry: electrically calibrated thermal detectors of optical radiation. Elsevier Science, NetherlandsCrossRefGoogle Scholar
  54. Hernandez GS, Serrano A, Cancillo ML, Garcia JA (2015) Pyranometer thermal offset: measurement and analysis. J Atmos Ocean Technol.  https://doi.org/10.1175/jtech-d-14-00082.1CrossRefGoogle Scholar
  55. Hickey JR, Frieden RG, Griffin FJ et al (1977) The self-calibrating sensor of the eclectic satellite pyrheliometer/ESP/program. Thermopile sensor with cavity-type receiverGoogle Scholar
  56. Hukseflux (2018) PV monitoring and meteorological industries prepare for revised pyranometers standard ISO 9060:2018Google Scholar
  57. IEC 2009. IEC 60904-4 Standard (2009) Ed.2, Photovoltaic devices—Part 4: Reference solar devices—Procedures for establishing calibration traceability. Geneva, SwitzerlandGoogle Scholar
  58. IEC 2015. IEC 60904-2 Standard (2015) Ed.3, Photovoltaic devices—Part 2: Requirements for photovoltaic reference devices. Geneva, SwitzerlandGoogle Scholar
  59. IEC 2017. IEC 61724-1 Standard (2017) Ed.1, Photovoltaic system performance—Part 1: Monitoring. Geneva, SwitzerlandGoogle Scholar
  60. ISO (1990a) ISO 1990. ISO 9060 Standard (1990) Solar energy—specification and classification of instruments for measuring hemispherical solar and direct solar radiationGoogle Scholar
  61. ISO (1990b) ISO 9059:1990 Standard. Solar energy—calibration of field pyrheliometers by comparison to a reference pyrheliometerGoogle Scholar
  62. ISO (1992) ISO 9847:1992: Solar energy—calibration of field pyranometers by comparison to a reference pyranometerGoogle Scholar
  63. ISO (1993) ISO 9846:1993 Standard. Solar energy—calibration of a pyranometer using a pyrheliometerGoogle Scholar
  64. KCDB (2018) Bureau International des Poids and Measures (BIPM), Key comparison data base, Appendix C, Calibration and measurement capabilities—CMCs. https://kcdb.bipm.org/AppendixC/ and https://kcdb.bipm.org/AppendixC/PR/PR_services.pdf. Accessed 12 Jul 2018
  65. Kendall J.M. (1968) The JPL standard total-radiation absolute radiometer. JPL technical report 32-7263Google Scholar
  66. Kimball HH, Hobbs HE (1923) A new form of thermoelectric recording pyrheliometer. Mon Weather Rev 51:239–242CrossRefGoogle Scholar
  67. Kopp G, Lawrence G, Rottman G (2005) The total irradiance monitor (TIM): science results. The solar radiation and climate experiment (SORCE). Springer, New York, pp 129–139CrossRefGoogle Scholar
  68. Kopp G, Heuerman K, Harber D, Drake G (2007) The TSI radiometer facility: absolute calibrations for total solar irradiance instruments. In: Butler JJ, Xiong J (eds). International society for optics and photonics, p 667709Google Scholar
  69. Langley SP (1880) The bolometer. In: Proceedings of the American Metrological Society, vol 2. pp 184–190Google Scholar
  70. Latimer JR (1973) On the Ångström and Smithsonian absolute pyrheliometric scales and the international pyrheliometric scale 1956. Tellus 25:586–592.  https://doi.org/10.3402/tellusa.v25i6.9723CrossRefGoogle Scholar
  71. Liu M, Zentgraf T, Liu Y, et al (2010) Light-driven nanoscale plasmonic motors. Nat Nanotechnol.  https://doi.org/10.1038/nnano.2010.128CrossRefGoogle Scholar
  72. Marchgraber RM (1970) The development of standard instruments for radiation measurements. Meteorological observations and instrumentation. American Meteorological Society, Boston, MA, pp 302–314CrossRefGoogle Scholar
  73. Martin JE, Fox NP (1993) Cryogenic solar absolute radiometer (CSAR). Metrologia.  https://doi.org/10.1088/0026-1394/30/4/016CrossRefGoogle Scholar
  74. Martin JE, Fox NP, Key PJ (1985) A cryogenic radiometer for absolute radiometric measurements. Metrologia.  https://doi.org/10.1088/0026-1394/21/3/007CrossRefGoogle Scholar
  75. McCluney R (1994) Introduction to radiometry and photometry, 2nd edn. Artech House, Boston, LondonGoogle Scholar
  76. Moll WJH (1922) A thermopile for measuring radiation. Proc Phys Soc Lond 35:257–260.  https://doi.org/10.1088/1478-7814/35/1/336CrossRefGoogle Scholar
  77. Murdock TL, Pollock DB (1998) High accuracy space based remote sensing requirements. National Institute of Standards and Technology, NIST GCR 98–748Google Scholar
  78. OSCAR (2018) WMO observing systems capability analysis and review tool. https://www.wmo-sat.info/oscar/variables/view/6
  79. Osterwald CR, Emery KA, Myers DR, Hart RE (1990) Primary reference cell calibrations, at SERI: history and methods. In: IEEE conference on photovoltaic specialists. pp 1062–1067Google Scholar
  80. Palmer JM, Grant BG (2010) The art of radiometry. SPIE Press, USACrossRefGoogle Scholar
  81. Philipona R (2002) Underestimation of solar global and diffuse radiation measured at Earth’s surface. J Geophys Res Atmos.  https://doi.org/10.1029/2002jd002396
  82. Pollock DB, Murdock TL, Datla RU, Thompson A (2000) Radiometric standards in space: the next step. Metrologia.  https://doi.org/10.1088/0026-1394/37/5/12CrossRefGoogle Scholar
  83. Pouillet C-S-M (1791–1868). A du texte (1838) Mémoire sur la chaleur solaire : sur les pouvoirs rayonnants et absorbants de l’air atmosphérique et sur la température de l’espace/par M. PouilletGoogle Scholar
  84. Puliaev S, Penna JL, Jilinski EG, Andrei AH (2000) Solar diameter observations at Observatório Nacional in 1998–1999. Astron Astrophys Suppl Ser 143:265–267.  https://doi.org/10.1051/aas:2000180CrossRefGoogle Scholar
  85. Putley EH (1977) Chapter 3 InSb submillimeter photoconductive detectors. Semicond Semimetals 12:143–168.  https://doi.org/10.1016/s0080-8784(08)60148-9CrossRefGoogle Scholar
  86. Quinn TJ, Martin JE (1985) A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C. Philos Trans R Soc Lond A 316:85–189Google Scholar
  87. Rabl A, Bendt P (1982) Effect of circumsolar radiation on performance of focusing collectors. J Sol Energy Eng.  https://doi.org/10.1115/1.3266308CrossRefGoogle Scholar
  88. Reda I, Myers D (1999) Calculating the diffuse responsivity of solar pyranometers. NREL report NREL/TP-560-26483Google Scholar
  89. Rodríguez-Outón I, Balenzategui JL, Fabero F, Chenlo F (2012) Development of optical collimators for accurate calibration of reference solar cells. In: 27th European photovoltaic solar energy conference and exhibitionGoogle Scholar
  90. Romero J, Fox NP, Fröhlich C (1991) First comparison of the solar and an SI radiometric scale. Metrologia 28:125–128.  https://doi.org/10.1088/0026-1394/28/3/004CrossRefGoogle Scholar
  91. Romero J, Fox NP, Fröhlich C (1995) Improved comparison of the world radiometric reference and the SI radiometric scale. Metrologia 32(6):523CrossRefGoogle Scholar
  92. Rüedi I, Finsterle W (2005) The world radiometric reference and its quality system. In: Technical conference on meteorology & environment instruments & methods of observation TECO, Session 3(15)Google Scholar
  93. Schmutz W, Fehlmann A, Finsterle W et al (2013) Total solar irradiance measurements with PREMOS/PICARD. In: AIP conference proceedings. American Institute of Physics, pp 624–627Google Scholar
  94. Stanhill G, Achiman O (2017) Early global radiation measurements: a review. Int J Climatol 37:1665–1671.  https://doi.org/10.1002/joc.4826CrossRefGoogle Scholar
  95. Stewart R, Spencer DW, Perez R (1985) In: Böer KW, Duffie JA (eds) The measurement of solar radiation BT—advances in solar energy: an annual review of research and development, vol 2. Springer US, Boston, MA, pp 1–49Google Scholar
  96. Stine WB, Geyer M (2001) Power from the sun. Chapter 2. In: Online book available at: http://www.powerfromthesun.net
  97. Suter M, Finsterle W, Kopp G (2012) WRR to SI comparison with DARA. In: Technical conference on meteorology & environment instruments & methods of observation, TECO, Session 4(5)Google Scholar
  98. Tatsiankou V, Hinzer K, Mohammed J et al (2013) Reconstruction of solar spectral resource using limited spectral sampling for concentrating photovoltaic systems. In: Cheben P, Schmid J, Boudoux C et al (eds) International society for optics and photonics, p 891506Google Scholar
  99. Thacher PD, Boyson WE, King DL (2000) Investigation of factors influencing the accuracy of pyrheliometer calibrations. In: Conference record of the twenty-eighth IEEE photovoltaic specialists conference—2000 (Cat. No.00CH37036). pp 1395–1398Google Scholar
  100. Thekaekara MP (1976) Solar radiation measurement: techniques and instrumentation. Sol Energy 18:309–325.  https://doi.org/10.1016/0038-092x(76)90058-xCrossRefGoogle Scholar
  101. Vignola F, Michalsky J, Stoffel T (2012) Solar and infrared radiation measurements (Energy and the environment). CRC Press, USAGoogle Scholar
  102. Walter B (2016) Direct solar irradiance measurements with a cryogenic solar absolute radiometer. In: Radiation processes in the atmosphere and ocean (IRS2016) AIP conference proceedings 1810, 080007-1/4Google Scholar
  103. Walter B, Fehlmann A, Finsterle W et al (2014) Spectrally integrated window transmittance measurements for a cryogenic solar absolute radiometer. Metrologia 51:S344–S349.  https://doi.org/10.1088/0026-1394/51/6/s344CrossRefGoogle Scholar
  104. Wilbert S, Pitz-Paal R, Jaus J (2013) Comparison of measurement techniques for the determination of circumsolar irradiance. In: AIP conference proceedings. American Institute of Physics, USA, pp 162–167Google Scholar
  105. Wilbert S, Geuder N, Schwandt M et al (2015) Task 46: best practices for solar irradiance measurements with rotating shadowband irradiometers. IEA SHC Sol Updat Newsl 62:10–11Google Scholar
  106. Wilbert S, Kleindiek S, Nouri B et al (2016) Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error. In: AIP conference proceedings. AIP Publishing LLC, USA, p 150009Google Scholar
  107. Willson RC (1973) New radiometric techniques and solar constant measurements. Sol Energy.  https://doi.org/10.1016/0038-092x(73)90035-2CrossRefGoogle Scholar
  108. WMO GAW (2005) WMO/GAW experts workshop on a global surface-based network for long term observations of column aerosol optical properties. World Meteorological Organization—Global Atmosphere Watch. WMO TD no. 1287; GAW report-no. 162Google Scholar
  109. Yeo KL, Krivova NA, Solanki SK (2014) Solar cycle variation in solar irradiance.  https://doi.org/10.1007/s11214-014-0061-7CrossRefGoogle Scholar
  110. Zerlaut G. (1989) Solar radiation instrumentation. In: Hulstrom RL (ed) Solar resources. MIT Press, Cambridge, MAGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José L. Balenzategui
    • 1
    Email author
  • Fernando Fabero
    • 1
  • José P. Silva
    • 1
  1. 1.CIEMAT—Photovoltaic Solar Energy Unit (Energy Department)MadridSpain

Personalised recommendations