Advertisement

Solar Nowcasting

  • Antonio SanfilippoEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

With the increasing ubiquity of solar energy systems, solar nowcasting is needed to redress short-term power system imbalances emerging from solar energy integration and normalize electricity markets in near real time. In this chapter, we provide an overview of the applications, solar resource data, evaluation procedures, modeling methods, and emerging technologies in solar nowcasting.

References

  1. Akarslan E, Hocaoglu FO (2016) A novel adaptive approach for hourly solar radiation forecasting. Renew Energy 87:628–633CrossRefGoogle Scholar
  2. Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energy Pol 32:1603–1614CrossRefGoogle Scholar
  3. Baig A, Akhter P, Mufti A (1991) A novel approach to estimate the clear day global radiation. Renew Energy 1(1):119–123 CrossRefGoogle Scholar
  4. Beyer HG, Martinez JP, Suri M (2009) MESOR report on benchmarking of radiation products. In: Deliverable 1.1. 3, Management and Exploitation of Solar Resource Knowledge (MESOR), European Commission 6th framework programme. Contract, (038665)Google Scholar
  5. Black JN, Bonython CW, Prescott JA (1954) Solar radiation and the duration of sunshine. Q J Royal Meteorol Soc 80(344):231–235CrossRefGoogle Scholar
  6. Boland J (1995) Time series analysis of climatic variables. Sol Energy 55(5):377–388CrossRefGoogle Scholar
  7. Boland J (2008) Time series and statistical modelling of solar radiation. In: Recent advances in solar radiation modelling. Springer, pp 283–312Google Scholar
  8. Brockwell PJ, Davis RA (2006) Introduction to time series and forecasting. Springer Science & Business MediaGoogle Scholar
  9. Buch KA Jr, Sun Chen-Hui (1995) Cloud classification using whole-sky imager data. N. p. Web, United StatesGoogle Scholar
  10. Cazorla A, Olmo FJ, Alados-Arboleda L (2008) Development of a sky imager for cloud cover assessment. J Opt Soc Am A 25:29–39CrossRefGoogle Scholar
  11. Chaouachi A, Kamel RM, Nagasaka K (2010) Neural network ensemble-based solar power generation short-term forecasting. JACIII 14(1):69–75CrossRefGoogle Scholar
  12. Chow CW, Urquhart B, Lave M, Dominguez A, Kleissl J, Shields J, Washom B (2011) Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol Energy 85(11):2881–2893CrossRefGoogle Scholar
  13. Chu Y, Pedro HTC, Coimbra CFM, Hybrid intra-hour (2013) DNI fore-casts with sky image processing enhanced by stochastic learning. Solar Energy 98(Part C):592–603CrossRefGoogle Scholar
  14. Diagne M, David M, Lauret P, Boland J, Schmutz N (2013) Review of solar ir-radiance forecasting methods and a proposition for small-scale insular grids. Renew Sustain Energy Rev 27:65–76CrossRefGoogle Scholar
  15. DNICast, N.d. (2015) Direct normal irradiance nowcasting methods for optimized operation of concentrating solar technologies. In: Project funded by the European Commission under the 7th Framework Energy Research Programme. Retrieved from http://cordis.europa.eu/project/rcn/109593_en.html on Nov 12
  16. Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd ed. WileyGoogle Scholar
  17. Ferrari S, Lazzaroni M, Piuri V, Salman A, Cristaldi L, Rossi M, Poli T (2012) Illuminance prediction through extreme learning machines. In: 2012 IEEE Workshop Environment Energy Structural and Monitoring Systems EESMS, pp 97–103Google Scholar
  18. Gibbons JM, Cox GM, Wood ATA, Craigon J, Ramsden SJ, Tarsitano D, Crout NMJ (2008) Applying Bayesian model averaging to mechanistic models: an example a comparison of methods. Environ Modell Softw23(8):973–985CrossRefGoogle Scholar
  19. Gordon R (2009) Predicting solar radiation at high resolutions: a comparison of time series forecasts. Solar Energy 83(3):342–349CrossRefGoogle Scholar
  20. Hammer A, Heinemann D, Lorenz E, Lackehe B (1999) Short-term forecasting of solar radiation: a statistical approach using satellite data. Sol Energy 67(13):139–150CrossRefGoogle Scholar
  21. Hirsch T, Martin Chivelet N, Gonzalez Martinez L, Biencinto Murga M, Wilbert S, Schroedter-Homscheidt M, Chenlo F, Feldhoff JF (2014) Technical report on the functional requirements for the nowcasting method. DNICast, Deliverable 2.1. grant #608623. Retrieved from http://www.dnicast-project.net/ on 12 Nov 2015
  22. Inage S (2017) Development of an advection model for solar forecasting based on ground data first report: development and verification of a fundamental model. Sol Energy 153:414–434CrossRefGoogle Scholar
  23. Inman RH, Pedro HT, Coimbra CF (2013) Solar forecasting methods for re-newable energy integration. Prog Energy Combust Sci 39(6):535–576CrossRefGoogle Scholar
  24. Jain PC (1984) Comparison of techniques for the estimation of daily global irradiation and a new technique for the estimation of global irradiation. Solar Wind Technol 1:123–134CrossRefGoogle Scholar
  25. Ji W, Chee KC (2011) Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Sol Energy 85(5):808–817CrossRefGoogle Scholar
  26. Kaplanis SN (2006) New methodologies to estimate the hourly global solar radiation; comparisons with existing models. Renew Energy 31(6):781–790CrossRefGoogle Scholar
  27. Kasten F, Young A (1989) Revised optical air mass tables and approximation formula. Appl Opt 28(22):4735–4738CrossRefGoogle Scholar
  28. Killinger S, Engerer N, Müller B (2017) QCPV: a quality control algorithm for dis-tributed photovoltaic array power output. Sol Energy 143:120–131CrossRefGoogle Scholar
  29. Kuhn P, Wilbert S, Prahl C, Schüler D, Haase T, Hirsch T, Wittmann M, Ramirez L, Zarzalejo L, Meyer A, Vuilleumier L, Blanc P, Pitz-Paal R (2017) Shadow camera system for the generation of solar irradiance maps. Sol Energy 157:157–170CrossRefGoogle Scholar
  30. Lauret P, Rodler A, Muselli M, David M, Diagne H, Voy-ant C (2012) A Bayesian model committee approach to forecasting global solar radiation. World Renewable Energy Forum, Denver, United StatesGoogle Scholar
  31. Li Q, Lu W, Yang J (2011) A hybrid thresholding algorithm for cloud detection on ground-based color images. J Atmos Oceanic Technol 28:1286–1296CrossRefGoogle Scholar
  32. Long CN, Dutton EG (2002) BSRN global network recommended QC tests, V2.0 BSRN Technical ReportGoogle Scholar
  33. Long CN, Sabburg JM, Calbó J, Pagès D (2006) Retrieving cloud characteristics from ground-based daytime color all-sky images. J Atmos Ocean Technol 23:633–652CrossRefGoogle Scholar
  34. Lorenz E, Hammer A, Heinemann D (2004) Short term forecasting of solar radiation based on satellite data. EUROSUN2004 (ISES Europe Solar Congress)Google Scholar
  35. Lyu L, Kantardzic M, Arabmakki E (2014) Solar irradiance forecasting by using wave-let based denoising. In: 2014 IEEE symposium on computational intelligence for engineering solutions (CIES), pp 110–116Google Scholar
  36. Mandal P, Madhira STS, Haque AU, Meng J, Pineda RL (2012) Forecasting poweroutput of solar photovoltaic system using wavelet transform and artificial intelligence techniques. In: Proceeding of computer science, vol 12, pp 332–337CrossRefGoogle Scholar
  37. Marquez R, Coimbra CFM (2013) Intra-hour DNI forecasting based on cloud tracking image analysis. Sol Energy 91(2013):327–336CrossRefGoogle Scholar
  38. McArthur LJB (1998) Baseline surface radiation network. Operat ManualGoogle Scholar
  39. Mellit A, Benghanem M, Kalogirou SA (2006) An adaptive wavelet network model for forecasting daily total solar-radiation. Appl Energy 83(7):705–722CrossRefGoogle Scholar
  40. Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan AM (2010) An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers Manage 51(4):771–782CrossRefGoogle Scholar
  41. Mellit A, Kalogirou SA (2008) Artificial intelligence techniques for photovoltaic applications: a review. Progress in Energy and Combustion Science 34(5):574–632CrossRefGoogle Scholar
  42. Mohammed AA, Yaqub W, Aung Z (2015) Probabilistic forecasting of solar power: an ensemble learning approach. In: Neves-Silva R, Jain L, Howlett R (eds) Intelligent decision technologies. IDT 2017. Smart innovation, systems and technologies, vol 39. Springer, ChamGoogle Scholar
  43. Moreno-Munoz A, De la Rosa JJG, Posadillo R, Bellido F (2008) Very short term fore-casting of solar radiation. In: 33rd IEEE Photovoltaic Specialists Conference PVSC 08, 2008, pp 1–5Google Scholar
  44. Paulescu M, Paulescu E, Gravila P, Badescu V (2013) Weather modeling and forecasting of PV systems operation. Springer, LondonCrossRefGoogle Scholar
  45. Pelland S, Remund J, Kleissl J, Oozeki T, De Brabandere K (2013) Photovoltaic and solar forecasting: state of the art. IEA PVPS Task 14, Subtask 3.1. Report IEA-PVPS T14–01: October 2013Google Scholar
  46. Perez R, Ineichen P, Seals R, Zelenka A (1990) Making full use of the clearness index for parameterizing hourly insolation conditions. Sol Energy 45:111–114CrossRefGoogle Scholar
  47. Prokop L, Misak S, Snasel V, Platos J, Kroemer P (2013) Supervised learning of photovoltaic power plant output prediction models. Neural Netw World 23:321–338CrossRefGoogle Scholar
  48. Sanfilippo A, Martin-Pomares L, Mohandes N, Perez-Astudillo D, Bachour D (2016a) An adaptive multi-modeling approach to solar nowcasting. Solar Ener-gy 125:77–85CrossRefGoogle Scholar
  49. Sanfilippo A, Pomares L, Perez-Astudillo D, Mohandes N, Bachour D (2016b) Optimal selection of training datasets for solar nowcasting models. In: Proceedings to the 32nd European photovoltaic solar energy conference and exhibition, pp 1482–1484Google Scholar
  50. Sanfilippo A, Pomares L, Perez-Astudillo D, Mohandes N, Bachour D (2018) Ensemble detrending for solar nowcasting. In: Proceedings to the 35th European photovoltaic solar energy conference and exhibitionGoogle Scholar
  51. Severiano CA, Silva PCL, Sadaei HJ, Guimarães FG (2017) Very short-term solar forecasting using fuzzy time series. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), Naples, pp 1–6Google Scholar
  52. Sfetsos A, Coonick AH (2000) Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy 68(2):169–178.  https://doi.org/10.1016/S0038-092X(99)00064-XCrossRefGoogle Scholar
  53. Smola A, Schoölkopf B (1998) A tutorial on support vector regression. NeuroCOLT Tech. Rep. TR 1998–030, Royal Holloway College, London, U.KGoogle Scholar
  54. Smola M, Smola AJ, Ratsch G, Scholkopf B, Kohlmorgen J, Vapnik V (1997) Predicting time series with support vector machines. In: Proceedings of ICANN ‘97, Springer LNCS 1327, pp 999–1004Google Scholar
  55. Vallance L, Charbonnier B, Paul N, Dubost S, Blanc P (2017) Towards a standardized procedure to assess solar forecast accuracy: a new ramp and time alignment metric. Sol Energy 150:408–422CrossRefGoogle Scholar
  56. Voyant C, Notton G, Kalogirou S, Nivet M-L, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582CrossRefGoogle Scholar
  57. Yang D, Quan H, Disfani VR, Liu L (2017) Reconciling solar forecasts: geographical hierarchy. Sol Energy 146:276–286CrossRefGoogle Scholar
  58. Yang D, Kleissl J, Gueymard CA, Pedro HTC, Coimbra CFM (2018) History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining. Sol Energy 168:60–101CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Qatar Environment and Energy Research InstituteDohaQatar

Personalised recommendations