Advertisement

Sampling Design Optimization of Ground Radiometric Stations

  • Luis Martín-PomaresEmail author
  • Martín Gastón Romeo
  • Jesús Polo
  • Laura Frías-Paredes
  • Carlos Fernández-Peruchena
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter presents a methodology to identify optimal site locations to establish a surface radiometric monitoring network once the raw solar estimations are produced from satellite images or numerical models. The site selection is done considering the long-term solar resource, its spatial distribution, variability and technical and logistics aspects. The methodology presented here is an adaptive sampling strategy under an assumed population model derived from satellite images or numerical models. The objective is to install the radiometric stations in optimal locations to correct the systematic biases of the modelled solar radiation, improving the estimates and minimizing the number of stations needed. To achieve that, we need to identify the area with a similar dynamic in terms of solar radiation. Inside the areas identified, the most optimal locations will be used to place the radiometric stations. The methodology is divided into three phases. The first phase divides the geographical extension under study to identify the areas with a similar dynamic in terms of monthly solar radiation. The selection of the number of cluster/areas is done with an information criteria technique. Once the optimal number of clusters and the extension of each area is defined, the second phase is the production of a long list of candidate sampling sites with GIS techniques based on constraints to identify the best locations in each area to place the radiometric stations. The third phase is based on ranking the long list of candidate locations with site visits and a checklist criterion based on BSRN recommendations to produce a final shortlist of optimal sites to measure solar radiation in each area. Finally, two tiers of radiometric stations are proposed to place in each area depending on the ranking level of each location.

References

  1. (C-WET) (2012) Summary of monthly values of solar radiation and meteorological parameters. 1–2Google Scholar
  2. Bank TW (2015) Solar resource mapping in Tanzania : site identification report. The World BankGoogle Scholar
  3. Bernardos A, Gaston M, Fernandez-Peruchena C, et al (2015) Solar resource mapping in Tanzania : solar modelling report. The World BankGoogle Scholar
  4. Calado P, Cristo M, Gonçalves MA et al (2006) Link-based similarity measures for the classification of web documents. J Am Soc Inf Sci Technol 57:208–221.  https://doi.org/10.1002/asi.20266CrossRefGoogle Scholar
  5. Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol IndicGoogle Scholar
  6. David G, Averbuch A (2012) SpectralCAT: Categorical spectral clustering of numerical and nominal data. Pattern Recognit 45:416–433.  https://doi.org/10.1016/j.patcog.2011.07.006CrossRefzbMATHGoogle Scholar
  7. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1:224–227.  https://doi.org/10.1109/TPAMI.1979.4766909CrossRefGoogle Scholar
  8. Ding C, He X (2004) K -means clustering via principal component analysis. In: Proceedings of the twentyfirst international conference on machine learning ICML 04 Cl:29.  https://doi.org/10.1145/1015330.1015408
  9. Dodgson JS, Spackman M, Pearman A, Phillips LD (2009) Multi-criteria analysis : a manualGoogle Scholar
  10. Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4:95–104.  https://doi.org/10.1080/01969727408546059MathSciNetCrossRefzbMATHGoogle Scholar
  11. Durbach IN, Stewart TJ (2012) Modeling uncertainty in multi-criteria decision analysis. Eur. J. Oper. ResGoogle Scholar
  12. Estoque RC (2011) GIS-based multi-criteria decision analysis. Geogr Compass.  https://doi.org/10.1111/j.1749-8198.2011.00431.xCrossRefGoogle Scholar
  13. Finley T, Joachims T (2008) Supervised k-means clustering. LearningGoogle Scholar
  14. Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27:835–850.  https://doi.org/10.1109/TPAMI.2005.113CrossRefGoogle Scholar
  15. Goutte C, Toft P, Rostrup E et al (1999) On clustering fMRI time series. Neuroimage 9:298–310.  https://doi.org/10.1006/nimg.1998.0391CrossRefGoogle Scholar
  16. Gueymard CA, Myers DR (2009) Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol Energy 83:171–185.  https://doi.org/10.1016/j.solener.2008.07.015CrossRefGoogle Scholar
  17. Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28:100–108.  https://doi.org/10.2307/2346830CrossRefGoogle Scholar
  18. Hegner H, Müller G, Nespor V, et al (1998) Update of the technical plan for BSRN data. 3:38Google Scholar
  19. Hornik K (2005) Cluster ensembles. In: Studies in classification, data analysis, and knowledge organization, pp 65–72Google Scholar
  20. Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci. Total EnvironGoogle Scholar
  21. Iam-On N, Boongoen T (2013) Revisiting link-based cluster ensembles for microarray data classification. In: Proceedings—2013 IEEE international conference on systems, man, and cybernetics, SMC 2013. pp 4543–4548Google Scholar
  22. Iam-On N, Boongoen T, Garrett S (2008) Refining pairwise similarity matrix for cluster ensemble problem with cluster relations. In: Lecture notes in computer science (including subseries Lecture Notes in artificial intelligence and lecture notes in bioinformatics). pp 222–233CrossRefGoogle Scholar
  23. Iam-on N, Garrett S (2010) LinkCluE: a matlab package for link-based. J Stat Softw 36:1–36CrossRefGoogle Scholar
  24. Jain A, Law M (2005) Data Clustering: A User’s Dilemma. Pattern Recognit. Mach. Intell. 1–10Google Scholar
  25. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31:651–666.  https://doi.org/10.1016/j.patrec.2009.09.011CrossRefGoogle Scholar
  26. Jeh G, Widom J (2001) SimRank : a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. 1–11.  https://doi.org/10.1145/775047.775126
  27. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis, Wiley-InterscienceGoogle Scholar
  28. Klink S, Reuther P, Weber A et al (2006) Analysing social networks within bibliographical data. Database Expert Syst Appl 234–243.  https://doi.org/10.1007/11827405_23Google Scholar
  29. König-Langlo G, Sieger R, Schmithüsen H et al (2013) Baseline surface radiation network (BSRN) update of the technical plan for BSRN data management October 2013. 30Google Scholar
  30. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130CrossRefGoogle Scholar
  31. Kumar A, Gomathinayagam S, Giridhar G et al (2013) Field experiences with the operation of solar radiation resource assessment stations in India. In: Energy ProcediaGoogle Scholar
  32. Kumar J, Mills RT, Hoffman FM, Hargrove WW (2011) Parallel k-means clustering for quantitative ecoregion delineation using large data sets. Procedia Comput Sci 4:1602–1611.  https://doi.org/10.1016/j.procs.2011.04.173CrossRefGoogle Scholar
  33. Mendoza GA, Martins H (2006) Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. For Ecol Manage 230:1–22.  https://doi.org/10.1016/j.foreco.2006.03.023CrossRefGoogle Scholar
  34. Nguyen N, Caruana R (2007) Consensus clusterings. In: Proceedings - IEEE international conference on data mining, ICDM. pp 607–612Google Scholar
  35. Perez R, Seals R, Zelenka A (1997) Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Sol Energy 60:89–96.  https://doi.org/10.1016/S0038-092X(96)00162-4CrossRefGoogle Scholar
  36. Polo J, Bernardos A, Navarro AA et al (2015a) Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Convers Manag 98:348–358.  https://doi.org/10.1016/j.enconman.2015.04.016CrossRefGoogle Scholar
  37. Polo J, Gastón M, Vindel JM, Pagola I (2015b) Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements. Renew Sustain Energy Rev 42:1326–1334.  https://doi.org/10.1016/j.rser.2014.11.014CrossRefGoogle Scholar
  38. Posselt R, Mueller RW, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198.  https://doi.org/10.1016/j.rse.2011.11.016CrossRefGoogle Scholar
  39. Rikalovic A, Cosic I, Lazarevic D (2014) GIS based multi-criteria analysis for industrial site selection. In: Procedia engineeringGoogle Scholar
  40. Schwandt M, Chhatbar K, Meyer R, et al (2014) Quality check procedures and statistics for the Indian SRRA solar radiation measurement network. In: Energy procediaGoogle Scholar
  41. Sun L, Cheng R, Cheung DW, Han J (2011) On Link-based similarity join. Vldb 714–725Google Scholar
  42. Velasquez M, Hester PT (2013) An analysis of multi-criteria decision making methods. Int J Oper Res.  https://doi.org/10.1007/978-3-319-12586-2CrossRefGoogle Scholar
  43. Vindel JM, Valenzuela RX, Navarro AA, Zarzalejo LF (2018) Methodology for optimizing a photosynthetically active radiation monitoring network from satellite-derived estimations: a case study over mainland Spain. Atmos Res 212:227–239.  https://doi.org/10.1016/j.atmosres.2018.05.010CrossRefGoogle Scholar
  44. Vrahatis MN, Boutsinas B, Alevizos P, Pavlides G (2002) The new k-windows algorithm for improving thek -means clustering algorithm. J Complex 18:375–391. http://dx.doi.org/10.1006/jcom.2001.0633MathSciNetCrossRefGoogle Scholar
  45. Wang JJ, Jing YY, Zhang CF, Zhao JH (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13:2263–2278.  https://doi.org/10.1016/j.rser.2009.06.021CrossRefGoogle Scholar
  46. Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26:97–107.  https://doi.org/10.1109/TKDE.2013.109CrossRefGoogle Scholar
  47. Yang C, Wan B, Gao X (2006) Effectivity of internal validation techniques for gene clustering. Lect Notes Comput Sci 4345:49CrossRefGoogle Scholar
  48. Yang D, Reindl T (2015) Solar irradiance monitoring network design using the variance quadtree algorithm. Renewables Wind Water, Sol 2:1–8.  https://doi.org/10.1186/s40807-014-0001-xCrossRefGoogle Scholar
  49. Zagouras A, Kazantzidis A, Nikitidou E, Argiriou AA (2013) Determination of measuring sites for solar irradiance, based on cluster analysis of satellite-derived cloud estimations. Sol Energy 97:1–11.  https://doi.org/10.1016/j.solener.2013.08.005CrossRefGoogle Scholar
  50. Zelenka A, Perez R, Seals R, Renne D (1999) Effective accuracy of satellite-derived hourly irradiances. Theor Appl Climatol 62:199–207CrossRefGoogle Scholar
  51. Zelnik-manor L, Zelnik-manor L, Perona P, Perona P (2004) Self-tuning spectral clustering. Adv Neural Inf Process Syst 17(2):1601–1608.  https://doi.org/10.1184/7940

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis Martín-Pomares
    • 1
    Email author
  • Martín Gastón Romeo
    • 2
  • Jesús Polo
    • 3
  • Laura Frías-Paredes
    • 2
  • Carlos Fernández-Peruchena
    • 4
  1. 1.Qatar Environment & Energy Research Institute, Hamad Bin Khalifa UniversityDohaQatar
  2. 2.National Renewable Energy Centre (CENER)Sarriguren (Navarra)Spain
  3. 3.Photovoltaic Solar Energy Unit. Renewable Energy Division (Energy Department)CiematMadridSpain
  4. 4.National Renewable Energy Centre (CENER)SevilleSpain

Personalised recommendations