Advertisement

Speckle Image Rendering for DIC Performance Assessment

  • F. Sur
  • B. Blaysat
  • M. Grédiac
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Assessing the metrological performance of the methods available for displacement field measurement is of primary importance in experimental mechanics. It often relies on synthetically rendered images of a specimen before and after deformation. In this context, the only varying quantity should be the displacement field in order to prevent any other phenomenon to bias the estimation of the metrological performance. Concerning digital image correlation (DIC), images of a random speckle pattern are needed. We propose a new algorithm to render such images with a classic model of stochastic geometry, namely the Boolean model.

Keywords

DIC Random speckle rendering Boolean model 

References

  1. 1.
    Bornert, M., Doumalin, P., Dupré, J.C., Poilâne, C., Robert, L., Toussaint, E., Wattrisse, B.: Shortcut in DIC error assessment induced by image interpolation used for subpixel shifting. Opt. Lasers Eng. 91, 124–133 (2017)CrossRefGoogle Scholar
  2. 2.
    Society for Experimental Mechanics: DIC challenge. http://sem.org/dic-challenge/
  3. 3.
    Orteu, J.J., Garcia, D., Robert, L., Bugarin, F.: A speckle texture image generator. Proc. SPIE 6341, 63410H (2006)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Sur, F., Blaysat, B., Grédiac, M.: Rendering deformed speckle images with a Boolean model. J. Math. Imaging Vis. 60, 634–650 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Serra, J.: The Boolean model and random sets. Comput. Graphics Image Process. 12(2), 99–126 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Newson, A., Delon, J., Galerne, B.: A stochastic film grain model for resolution-independent rendering. Comput. Graphics Forum 36(8), 684–699 (2017)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  1. 1.Université de LorraineCNRS, INRIA projet MagritVandoeuvre-lès-Nancy CedexFrance
  2. 2.Université Clermont Auvergne, SIGMA, Institut Pascal, UMR CNRS 6602Clermont-FerrandFrance

Personalised recommendations