Advertisement

Contribution to Fatigue Striation Phenomenon Analysis by Using Image Processing

  • Benoit Ruellan
  • Eric Robin
  • Jean-Benoit Le Cam
  • Isabelle Jeanneau
  • Frédéric Canévet
  • Gérard Mauvoisin
  • Didier Loison
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Since the use of energetic approaches for the prediction of the number at macro-crack initiation in elastomers, a special attention is paid on fatigue crack growth at the microscopic scale. In filled natural rubber, failure surfaces exhibit wrenchings and striations (Le Cam et al., Int J Fatigue 52:82–94, 2013). Both are assumed to be due to strain-induced crystallization (SIC). Only four studies address fatigue striations (Le Cam et al., Int J Fatigue 52:82–94, 2013; Le Cam and Toussaint, Macromolecules 43:4708–4714, 2010; Flamm et al., Int J Fatigue 33:1189–1198, 2011; Muñoz-Mejia, Dissertation, Université Claude Bernard, Lyon I, 2011), while they could provide information of importance to better understand how SIC enables natural rubber to resist the crack growth. As striations are similar to fringe patterns, this study aims at using a phase extraction algorithm from a single fringe pattern to analyse the striation morphology (Robin et al., Appl Opt 44:7261–7269, 2005; Takeda et al., J Opt Sot Am 72:156–160, 1982; Servin et al., Appl Opt 36(19):4540–4548, 1997; Robin et Valle, Appl Opt 43(22):4355–4361, 2004; Valle et al., Strain 46(2):175–183, 2008). This phase extraction methodology is split into three steps. The first one consists in extracting the wrapped phase without orientation. The second step is devoted to the determination of the fringe pattern orientation from a classic unwrapping algorithm. The third and last step consists in using an unwrapping algorithm (Zuo et al., Opt Lasers Eng 85:84–103, 2016; Menese et al., Appl Opt 44(7):1207–1215, 2005) and to compute the difference between the unwrapped phase processed and a plane in order to analyse the evolution of the striation morphology. This methodology has been applied to characterize the striation morphology observed at the failure surface of specimen tested under different fatigue loading conditions.

Keywords

Fatigue striation Phase demodulation Single fringe pattern Experimental mechanics Rubber 

References

  1. 1.
    Le Cam, J.-B., Huneau, B., Verron, E.: Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions. Int. J. Fatigue. 52, 82–94 (2013)CrossRefGoogle Scholar
  2. 2.
    Le Cam, J.-B., Toussaint, E.: The mechanism of fatigue crack growth in rubbers under severe loading: the effect of stress-induced crystallization. Macromolecules. 43, 4708–4714 (2010)CrossRefGoogle Scholar
  3. 3.
    Flamm, M., Spreckels, J., Steinweger, T., Weltin, U.: Effects of very high loads on fatigue life of NR elastomer materials. Int. J. Fatigue. 33, 1189–1198 (2011)CrossRefGoogle Scholar
  4. 4.
    Muñoz-Mejia, L.: Étude expérimentale des mécanismes d’endommagement par fatigue dans les élastomères renforcés. Ph.D. dissertation, Université Claude Bernard, Lyon I (2011)Google Scholar
  5. 5.
    Robin, E., Valle, V., Brémand, F.: Phase demodulation method from a single fringe pattern based on correlation with a polynomial form. Appl. Opt. 44, 7261–7269 (2005)CrossRefGoogle Scholar
  6. 6.
    Takeda, M., Hideki, I., Kobayashi, S.: Fourier-transform method of fringe pattern analysis for computer based topography and interferometry. J. Opt. Sot. Am. 72, 156–160 (1982)CrossRefGoogle Scholar
  7. 7.
    Servin, M., Marroquin, J.-L., Cuevas, F.-J.: Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt. 36(19), 4540–4548 (1997)CrossRefGoogle Scholar
  8. 8.
    Robin, E., Valle, V.: Phase demodulation from a single fringe pattern based on a correlation technique. Appl. Opt. 43(22), 4355–4361 (2004)CrossRefGoogle Scholar
  9. 9.
    Valle, V., Robin, E., Bremand, F.: Analysis of digital speckle-pattern interferometry fringe patterns issued from transitory mechanical loading. Strain. 46(2), 175–183 (2008)CrossRefGoogle Scholar
  10. 10.
    Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)CrossRefGoogle Scholar
  11. 11.
    Menese, J., Gharbi, T., Humbert, P.: Phase-unwrapping algorithm for images with high noise content based on a local histogram. Appl. Opt. 44(7), 1207–1215 (2005)CrossRefGoogle Scholar
  12. 12.
    Corvec, G., Robin, E., Le Cam, J.-B., Sangleboeuf, J.-C., Lucas, P.: Improving spatio-temporal resolution of infrared images to detect thermal activity of defect at the surface of inorganic glass. Infrared Phys. Technol. 77, 193–202 (2016)CrossRefGoogle Scholar
  13. 13.
    Ruellan, B., Le Cam, J.-B., Robin, E., Jeanneau, I., Canévet, F., Mortier, F.: Influence of the temperature on lifetime reinforcement of a filled NR. In: Conference and Exposition on Experimental and Applied Mechanics SEM 2018, Greenville, 4–7 June 2018Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • Benoit Ruellan
    • 1
    • 2
    • 3
  • Eric Robin
    • 1
    • 2
  • Jean-Benoit Le Cam
    • 1
    • 2
  • Isabelle Jeanneau
    • 2
    • 3
  • Frédéric Canévet
    • 2
    • 3
  • Gérard Mauvoisin
    • 4
  • Didier Loison
    • 1
  1. 1.Univ Rennes, CNRS, IPR (Institute de Physique de Rennes)–UMR 6251RennesFrance
  2. 2.LC-DRIME, Joint Research LaboratoryCooper Standard—Institut de Physique UMR 6251Rennes CedexFrance
  3. 3.Cooper Standard FranceRennesFrance
  4. 4.Laboratoire de Génie Civil et Génie Mécanique EA 3913IUT-Université de Rennes 1RennesFrance

Personalised recommendations