Kinetics and Transport Phenomena in Multi-phase Reactors

  • Elio SantacesariaEmail author
  • Riccardo Tesser


This chapter is dedicated to the topic of multi-phase reactors, characterized by reactions occurring in a liquid phase in which one or more of the reactants, coming from another gaseous or liquid phase, is dissolved. The catalyst promoting the reaction can be a component of the reacting mixture (e.g., gas–liquid reactors), a solid wetted by liquid phase (gas–liquid–solid reactors), or, more seldom, dissolved in another immiscible liquid (liquid–liquid or gas–liquid–liquid reactors). Modeling of such systems is challenging because chemical, physical, and fluid dynamic factors are all involved, sometimes giving place to peculiar phenomena. Occurrence of a reaction in the liquid phase containing the catalyst determines the occurrence of gradients at the interfaces, followed by a mass-transfer flow across the interface. The main theories presented in this chapter are two-film theory, surface renewal theory, and penetration theory. Examples presented in this chapter include the-oxidation of tetra-hydro-anthraquinol (THEAQH2) and o-cresol alkylation. The Matlab code associated with these examples is available online.

Supplementary material

419170_1_En_7_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 38 kb)


  1. Akita, K., Yoshida, F.: Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Ind. Eng. Chem. Process Des. Dev. 12(1), 76–80 (1973)CrossRefGoogle Scholar
  2. Alper, E., Wichtendahl, B., Deckwer, W.D.: Gas absorption mechanism in catalytic slurry reactors. Chem. Eng. Sci. 35(1–2), 217–222 (1980)CrossRefGoogle Scholar
  3. Astarita, G.: Mass transfer with chemical reaction. Elsevier Publisher Co. (1967)Google Scholar
  4. Berglin, T., Shoon, N.H.: Kinetic and mass transfer aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Ind. Eng. Chem. Process Des. Dev. 20(4), 615 (1981)Google Scholar
  5. Carrà, S., Morbidelli, M., Santacesaria, E., Buzzi, G.: Synthesis of propylene oxide from propylene chlorohydrins—II: Modeling of the distillation with chemical reaction unit. Chem. Eng. Sci. 34(9), 1133–1140 (1979)Google Scholar
  6. Carrà, S., Santacesaria, E., Morbidelli, M., Cavalli, L.: Synthesis of propylene oxide from propylene chlorohydrins—I: kinetic aspects of the process. Chem. Eng. Sci. 34(9), 1123–1132 (1979)Google Scholar
  7. Carrà, S., Santacesaria, E., Morbidelli, M. Schwarz, P., Divo, C.: Synthesis of epichlorohydrin by elimination of hydrogen chloride from chlorohydrins. 1. Kinetic aspects of the process. Ind. Eng. Chem. Process Des. Dev. 18(3), 424–427 (1979)Google Scholar
  8. Carrà, S., Santacesaria, E., Morbidelli, M., Schwarz, P., Divo, C.: Synthesis of epichlorohydrin by elimination of hydrogen chloride from chlorohydrins. 2. Simulation of the reaction unit. Ind. Eng. Chem. Process Des. Dev. 18(3), 428–433 (1979)Google Scholar
  9. Carrà, S., Santacesaria, E.: Engineering aspects of gas-liquid catalytic reactions. Catal. Rev. Sci. Eng. 22(1), 75–140 (1980)CrossRefGoogle Scholar
  10. Carrà, S., Morbidelli, M.: Chemical Reaction and Reactor Engineering. In: Carberry, Varma, A. (eds.). Marcel Dekker, New York (1987)Google Scholar
  11. Charpentier, J.C.: Mass transfer rates in gas-liquid absorbers. In: Drew, T.B. (ed.) Advances in Chemical Engineering, pp. 2–133. Elsevier, New York (1981)Google Scholar
  12. Chaudhari, R.V., Ramachandran, P.A.: Three phase slurry reactors. AIChE J. 26(2), 177–201 (1980)CrossRefGoogle Scholar
  13. Chilton, T.C., Colburn, A.P.: Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Ind. Eng. Chem. 26(11), 1183–1187 (1934)Google Scholar
  14. Danckwerts, P.V.: Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 46, 300–305 (1950)CrossRefGoogle Scholar
  15. Danckwerts, P.V.: Gas-Liquid Reactions. Mc Graw-Hill Book Co. (1970)Google Scholar
  16. Danckwerts, P. V.: Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem. 43(6), 1460–1467 (1951a)Google Scholar
  17. Danckwerts, P.V.: Absorption by simultaneous diffusion and chemical reaction into particles of various shapes and into falling drops. Trans. Faraday Soc. 47, 1014–1022 (1951b)Google Scholar
  18. Dechwer, W.D., Burchart, R., Zoll, G.: Mixing and mass transfer in tall bubble columns. Chem. Eng. Sci. 29(11), 2177–2188 (1974)Google Scholar
  19. Di Serio, Di Martino, Santacesaria, E.: Kinetics of fatty acids polyethoxylation. Ind. Eng. Chem. Res. 33(3), 509–514 (1994)Google Scholar
  20. Di Serio, M., Tesser, R., Felippone, F., Santacesaria, E.: Ethylene oxide solubility and ethoxylation kinetics in the synthesis of nonionic surfactants. Ind. Eng. Chem. Res. 34(11), 4092–4098 (1995)CrossRefGoogle Scholar
  21. Dimiccoli, A., Di Serio, M., Santacesaria, E.: Mass transfer and kinetics in spray-tower-loop absorbers and reactors. Ind. Eng. Chem. Res. 39(11), 4082–4093 (2000)Google Scholar
  22. Duduković, A., Pjanović, R.: Effect of turbulent schmidt number on mass-transfer rates to falling liquid films. Ind. Eng. Chem. Res. 38(6), 2503–2504 (1999)CrossRefGoogle Scholar
  23. Gianetto, A., Specchia, V.: Trickle-bed reactors: state of art and perspectives. Chem. Eng. Sci. 47(13–14), 3197–3213 (1992)CrossRefGoogle Scholar
  24. Gilliland, E.R., Sherwood, T.K.: Diffusion of vapors into air streams. Ind. Eng. Chem. 26(5), 516–523 (1934)CrossRefGoogle Scholar
  25. Higbie, R.: The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Eng. 31, 365 (1935)Google Scholar
  26. Joshi, J.B., Sharma, M.M.: Mass transfer characteristics of horizontal sparged contactors. Trans. Inst. Chem. Eng. 54, 42 (1976)Google Scholar
  27. Linek, V., Vacek, V.: Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas-liquid contactors. Chem. Eng. Sci. 36(11), 1747–1768 (1981)Google Scholar
  28. Levenspiel, O., Godfrey, J.H.: A gradientless contactor for experimental study of interphase mass transfer with/without reaction. Chem. Eng. Sci. 29(8), 1723–1730 (1974)CrossRefGoogle Scholar
  29. Levenspiel, O.: Chemical Reaction Engineering. John Wiley (1972)Google Scholar
  30. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ (1962)Google Scholar
  31. Lewis, W.K., Whitman, W.G.: Principles of gas absorption. Ind. Eng. Chem. 16(12), 1215–1220 (1924)CrossRefGoogle Scholar
  32. Nitta, T., Akimoto, T., Matsui, A., Katoyama, T.: An apparatus for precise measurement of gas solubility and vapor pressure of mixed solvents. J. Chem. Eng. Jpn. 16(5), 352–356 (1983)Google Scholar
  33. Perry, R.H., Green, D.W.: Chemical Engineer’s Handbook, 6th edn. Mac Graw Hill Book Co., New York (1984)Google Scholar
  34. Ramachandran, P.A.; Chaudhari, R.V.: Three-Phase Catalytic Reactors. Gordon and Breach, New York (1983)Google Scholar
  35. Ranade Vivek, V., Chaudhari, R., Gunjal, P.R.: Trickle Bed Reactors: Reactor Engineering and Applications. Elsevier (2011)Google Scholar
  36. Sano, Y., Yamaguchi, N., Adachi, T.: Mass transfer coefficients for suspended particles in agitated vessels and bubble columns. J. Chem. Eng. Jpn. 7(4), 255–261 (1974)CrossRefGoogle Scholar
  37. Santacesaria, E., Di Serio, M., Garaffa, R., Addino, G.: Kinetics and mechanisms of fatty alcohol polyethoxylation. 1. The reaction catalyzed by potassium hydroxide. Ind. Eng. Chem. Res. 31(11), 2413–2418 (1992)Google Scholar
  38. Santacesaria, E., Di Serio, M., Tesser, R., Cammarota, F.: Comparison between the performances of a well-stirred slurry reactor and a spray loop reactor for the alkylation of p-cresol with isobutene. Ind. Eng. Chem. Res. 44(25), 9473–9481 (2005)Google Scholar
  39. Santacesaria, E., Ferro, R., Ricci, S., Carrà, S.: Kinetic aspects in the oxidation of hydrogenated 2-ethyltetrahydroanthraquinone. Ind. Eng. Chem. Res. 26(1), 155–159 (1987)Google Scholar
  40. Santacesaria, E., Silvani, R., Wilkinson, P., Carrà, S.; Alkylation of p-cresol with isobutene catalyzed by cation-exchange resins: a kinetic study. Ind. Eng. Chem. Res. 27(4), 541–548 (1988)Google Scholar
  41. Santacesaria, E., Wilkinson, P., Babini, P., Carrà, S.: Hydrogenation of 2-ethyl-tetrahydro-anthraquinone in the presence of palladium catalyst. Ind. Eng. Chem. Res. 27(5), 780–784 (1988)CrossRefGoogle Scholar
  42. Santacesaria, E., Di Serio, M., Tesser, R.: Gas–liquid and gas–liquid–solid reactions performed in spray tower loop reactors. Ind. Eng. Chem Res. 44(25), 9461–9472 (2005)CrossRefGoogle Scholar
  43. Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in a trickle bed reactor. AIChE J. 15, 226 (1969)Google Scholar
  44. Satterfield, C.N., Sherwood, T.K.: The Role of Diffusion in Catalysis. Addison Wesley Pu. Co. Inc. (1963)Google Scholar
  45. Srinivasan, V., Aiken. R.C.: Mass transfer to droplets formed by the controlled breakup of a cylindrical jet—physical absorption. Chem. Eng. Sci. 43(12), 3141–3150 (1988)Google Scholar
  46. van Krevelen, D.W., Hoftijzer, P.J.: Kinetics of gas-liquid reactions part I. General theory. Recueil des Travaux Chimiques des Pays-Bas. 67(7), 563–586 (1948)Google Scholar
  47. Westerterp, K.R., Wammes, W.J.A.: Three-phase trickle-bed reactors. In: Ullmann Encyclopedia of industrial Chemistry, pp. 309-320. VCH Publishers: Weinheim (1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurochem Engineering s.r.l.MilanItaly
  2. 2.Dipartimento di Scienze Chimiche, Complesso di Monte Sant’AngeloUniversity of Naples Federico IINaplesItaly

Personalised recommendations