Kinetics of Heterogeneous Reactions and Related Mechanisms

  • Elio SantacesariaEmail author
  • Riccardo Tesser


In this chapter the influence of mass-transfer and adsorption rates on heterogeneous catalysis is described. As heterogeneous reactions normally occur between molecules adsorbed on the catalytic surface, that is, mainly inside catalyst particles, the concentration of the reactants inside the particles is always lower than that of the fluid bulk. In this way, concentration gradients are originated by the reaction and produce a mass-transfer flux of the reagents and products between the fluid bulk and the particles. The overall reaction rate is, therefore, represented by a sequence of steps: (1) external diffusion, (2) internal diffusion, (3) adsorption, (4) surface chemical reaction, (5) desorption, (6) internal diffusion, and (7) external diffusion. The main heterogeneous mechanisms, like Langmuir–Hinshelwood, are presented and different solved examples and exercises are developed, such as steam reforming of methanol, hydrogenation of iso-octenes, etc. The Matlab code associated with these examples is available online.

Supplementary material

419170_1_En_5_MOESM1_ESM.docx (94 kb)
Supplementary material 1: The solution of the exercises of this Chapter by MATLAB are reported as Electronic Supplementary Material (ESM) (DOCX 93 kb)


  1. Anastasov, A.I.: Chem. Eng. Process. 42, 151–165 (2003)CrossRefGoogle Scholar
  2. Berty, J.M.: Testing commercial catalysts in recycle reactors; catal. Rev.-Sci. Eng. 20, 75 (1979)CrossRefGoogle Scholar
  3. Bischoff, K.B., Froment, G.F.: Rate equations for consecutive heterogeneous processes. I&EC Fundamental 1(3), 195–200 (1962)CrossRefGoogle Scholar
  4. Boudart, M.: Kinetics of Chemical Processes. Prentice-Hall Inc (1968)Google Scholar
  5. Boudart, M.: Heterogeneous catalysis by metals. J. Mol. Catal. 30, 27–38 (1985)CrossRefGoogle Scholar
  6. Calderbank, P.H., Chandrasekharan, K., Fumagalli, C.: The prediction of the performance of packed-bed catalytic reactors in the air-oxidation of o-xylene. Chem. Eng. Sci. 32, 1435–1443 (1977)CrossRefGoogle Scholar
  7. Carberry, J.J.: Designing laboratory catalytic reactors; Ind. Eng. Chem. 56, 39 (1964)Google Scholar
  8. Carotenuto, G., Tesser, R., Di Serio, M., Santacesaria, E.: Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst; Catalysis Today, pp. 202–210 (2013)Google Scholar
  9. Chandrasekharan, K., Calderbank, P.H.: Kinetics of the catalytic air-oxidation of o-xylene measured in a tube-wall-catalytic reactor. Chem. Eng. Sci. 35(1–2), 341–347(1980)Google Scholar
  10. Davidson, J.F., Harrison, D.: Fluidized Particles. Cambridge University Press, New York (1963) Google Scholar
  11. Dias, C.R., Farinha, P.M., Bond, G.C.: Oxidation of o-Xylene to phthalic anhydride over V2O5/TiO2 catalysts part 4; mathematical modelling study and analysis of the reaction network. J. Catal. 164(2), 347–351(1996)Google Scholar
  12. Franckaerts, J., Froment, G.F.: Kinetic study of the dehydrogenation of ethanol. Chem. Eng. Sci. 19, 807 (1964)CrossRefGoogle Scholar
  13. Froment, G.F., Bischoff, K.B.: Chemical reactor analysis and design. Wiley, New York (1969)Google Scholar
  14. Gimeno, M.P., Gascon, J., Tellez, C., Herguido, J., Menedez, M.: Selective oxidation of o-xylene to phthalic anhydride over V2O5/TiO2: kinetic study in a fluidized bed reactor. Chem. Eng. Process. 47(9–10), 1844–1852 (2008)CrossRefGoogle Scholar
  15. Hawes, R.W., Kabel, R.L.: Thermodynamic equilibrium in the vapor phase esterification of Acetic acid with ethanol. AIChE J. 14(4), 606–611(1968)Google Scholar
  16. Herten, J., Froment, G.F.: Kinetics and product distribution in oxidation of o-xylene on a vanadium pentoxide catalyst. Ind. Eng. Chem. Proc. Des. Dev. 7(4), 516–526 (1968)CrossRefGoogle Scholar
  17. Hougen, O.A., Watson, K.M.: Chemical process principles, part two; thermodynamics. Wiley, New York (1947)Google Scholar
  18. Kunii, D., Levenspiel, O.: Bubbling bed model for kinetic processes in fluidized beds. Gas-solid mass and heat transfer and catalytic reactions. Ind. Eng. Chem. Process. Des. Dev. 7, 481–492 (1968)Google Scholar
  19. Othmer, K.: Encyclopedia of Chemical Technology. Wiley-Interscience, New York (1958)Google Scholar
  20. Papageorgius, J.N., Abello, M.C., Froment, G.F.: Kinetic modeling of the catalytic oxidation of o- xylene over an industrial V2O5-TiO2 (anatase) catalyst. Appl. Catal. A: Gen. 120(1), 17–43 (1994)Google Scholar
  21. Potter, A.E., Bender, P., Ritter, H.L.: The vapor phase association of acetic-d3 acid-d. J. Phys. Chem. 59, 250–254 (1955)CrossRefGoogle Scholar
  22. Saleh, R.Y., Wachs, I.E.: Reaction network and kinetics of o-xylene oxidation to phthalic anhydride over V2O5/TiO2(anatase) catalysts. Appl. Catal. 31(1), 87–98 (1987)CrossRefGoogle Scholar
  23. Santacesaria, E., Carrà, S.: Cinetica dello steam reforming del metanolo; La Rivista dei Combustibili, vol XXXII, 7–8, 227–232 (1978)Google Scholar
  24. Santacesaria, E., Di Serio, M., Gelosa, G., Carrà, S.: Kinetics of methanol homologation: Part I. Behaviour of cobalt-phosphine-iodine catalysts. J. Molec. Catal. 58(1), 27–42 (1990)Google Scholar
  25. Santacesaria, E., Morbidelli, M., Carrà, S.: Kinetics of the catalytic oxidation of methanol to formaldehyde. Chem. Eng. Sci. 36, 909–918 (1981)CrossRefGoogle Scholar
  26. Santacesaria, E., Gelosa, D., Danise, P., Carrà, S.: Vapor-phase esterification catalyzed by decationized zeolites. J. Catal. 80, 427–436 (1983)CrossRefGoogle Scholar
  27. Sinfelt, J.H., Hurwitz, H., Shulman, R.A.: Kinetics of methylcyclohexane dehydrogenation over Pt—Al2O3, J. Phys. Chem. 64(10), 1559–1562 (1960)Google Scholar
  28. Skrzypek, J., Grzesik, M., Galantowicz, M., Solinski, J.: Kinetics of the catalytic air oxidation of o-xylene over a commercial V2O5-TiO2 catalyst. J. Chem. Eng. Sci. 40(4), 611–620 (1985)CrossRefGoogle Scholar
  29. Smith, J.M.: Chemical Engineering Kinetics; Mc Graw-Hill Book Co, New York (1981)Google Scholar
  30. Tesser, R., Maradei, V., Di Serio, M., Santacesaria, E.: Kinetics of the oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2 − SiO2 catalysts prepared by grafting. Ind. Eng. Chem. Res. 43, 1623–1633 (2004)CrossRefGoogle Scholar
  31. Thaller, L.H., Thodos, G.: The dual nature of a catalytic reaction: The dehydrogenation of sec-butyl alcohol to methyl ethyl ketone at elevated pressures; A.I.Ch.E.J. 6(3), 369–373 (1960)Google Scholar
  32. Tschernitz, J., Bornstein, S., Beckmann, R.B., Hougen, O.A.: Trans. Am. Inst. Chem. Engrs 42, 883–903 (1946)Google Scholar
  33. Vanhove, D., Blanchard, M.: Catalytic oxidation of o-xylene. J. Catal. 36(1), 6–10 (1975)Google Scholar
  34. Varma, R.L., Saraf, D.N.: Oxidation of butene to maleic anhydride: I. Kinetics and mechanism. J. Catal. 55(3) 361–372 (1978)Google Scholar
  35. Yabrov, A.A., Ivanov, A.: Response studies of the mechanism of o-xylene oxidation over a vanadium-titanium oxide catalyst. React. Kinet. Mech. Catal. 14(3) 347–351 (1980)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurochem Engineering s.r.l.MilanItaly
  2. 2.Dipartimento di Scienze Chimiche, Complesso di Monte Sant’AngeloUniversity of Naples Federico IINaplesItaly

Personalised recommendations