Advertisement

Kinetics of Homogeneous Reactions and Related Mechanisms

  • Elio SantacesariaEmail author
  • Riccardo Tesser
Chapter

Abstract

In this chapter the study of kinetics is introduced by examining homogeneous reactions. The relationship between kinetic law and reaction mechanism is stressed introducing the concepts of elementary steps, slow-rate– determining steps, and steady-state conditions. Rate law is derived from a reasonable hypothesis of a reaction mechanism and is introduced in the mass balance equation that differs according to employed reactor, i.e., well- stirred batch, semibatch, continuous reactor, or alternatively, tubular- packed bed reactor. The characterization methods for determining the ideal behavior of these different types of reactors are described. The schemes of multiple reactions (equilibrium, competitive, and consecutive reactions) are discussed and a general approach is given to the kinetic description of complex schemes. The kinetic approach to radical chain and enzymatic reactions are examined on a theoretical basis, enriched with different examples and exercises. Many other examples of kinetics are reported, with exercises and Matlab code, associated with these exercises, available online.

Supplementary material

419170_1_En_4_MOESM1_ESM.doc (218 kb)
Supplementary material 1 (DOC 279 kb)

References

  1. Alberty, R.A., Silbey, R.J.: Physical Chemistry. Wiley, New York (1992)Google Scholar
  2. Bamford, C.H., Tipper, C.F.H.: Comprehensive Chemical Kinetics, vol. 2, p. 197. Elsevier, Amsterdam (1969)Google Scholar
  3. Bodenstein, M.: Über die Zersetzung des Jodwasserstoffgases in der Hitze. Z. Physik. Chem. 13, 56 (1894)Google Scholar
  4. Bodenstein, M., Lind, S.C.: Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen Elementen. Z. Physik. Chem. 57, 168 (1906)Google Scholar
  5. Brönsted, J.N., Kilpatrick, M., Kilpatrick, M.: Kinetic studies on ethylene oxides. J. Am. Chem. Soc. 51(2), 428–461 (1929)CrossRefGoogle Scholar
  6. Eyring, H., Daniels, F.: The decomposition of nitrogen pentoxide in inert solvent. J. Am. Chem. Soc. 52(4), 1472–1486 (1930)CrossRefGoogle Scholar
  7. Gerasimov, Y.A., Dreving, V., Eremin, E., KIselev, A., Lebedev, V., Panchenkov, G., Shlygin, A.: Physical Chemistry, vol. 1. MIR Pu., Moscow (1974)Google Scholar
  8. Hinshelwood, C.N., Green, T.E.: The interaction of nitric oxide and hydrogen and the molecular statistics of termolecular gaseous reactions. J. Chem. Soc. 128, 730 (1926)CrossRefGoogle Scholar
  9. Hougen, O.A., Watson, K.M.: Chemical Process Principles, Part Three; Kinetics and Catalysis. John Wiley & Sons, New York (1947 and 1961)Google Scholar
  10. Hughes, E.D., Ingold, C.K., Reed, R.I.: Kinetics and mechanism of aromatic nitration. Part II. Nitration by the nitronium ion, NO2+, derived from nitric acid. J. Chem. Soc. 2400–2440 (1950)Google Scholar
  11. Johnson, K.A., Goody, R.S.: The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269 (2011)CrossRefGoogle Scholar
  12. Kistiakowski, G.B.: Homogeneous gas reaction at high concentration. I. Decomposition of hydrogen iodide. J. Am. Chem. Soc. 50(9), 2315–2332 (1928)CrossRefGoogle Scholar
  13. Laidler, K.J.: Chemical Kinetics. Mc Graw Hill Book Co., New York (1950)Google Scholar
  14. Lindemann, F.A.: Discussion on the radiation theory of chemical action. Trans. Faraday Soc. 17, 598 (1922)CrossRefGoogle Scholar
  15. Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934)CrossRefGoogle Scholar
  16. Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)Google Scholar
  17. Missen, R.W, Mims, C.A., Saville, B.A.: Introduction to Chemical Reaction Engineering and Kinetics. John Wiley & Sons (1999)Google Scholar
  18. Panchenkov, G.M., Lebedev, V.P.: Chemical Kinetics and Catalysis. MIR, Moscow (1976)Google Scholar
  19. Polanyi, M.: On the problem of the reaction velocity. Z. Elektrochem. 26, 50 (1920)Google Scholar
  20. Santacesaria, E., Di Serio, M., Ciambelli, P., Gelosa, D., Carrà, S.: Catalytic alkylation of phenol with methanol: factors influencing activities and selectivities. Appl. Catal. 64, 101–117 (1990a)CrossRefGoogle Scholar
  21. Santacesaria, E., Di Serio, M., Gelosa, G., Carrà, S.: Kinetics of methanol homologation: part I. Behaviour of cobalt-phosphine-iodine catalysts. J. Mol. Catal. 58(1), 27–42 (1990b)CrossRefGoogle Scholar
  22. Smith, J.M.: Chemical Engineering Kinetics. Mc Graw-Hill Book Co, New York (1981)Google Scholar
  23. Svirbely, W.J., Roth, J.F.: Carbonyl reactions. I. The kinetics of cyanohydrin formation in aqueous solution. J. Am. Chem. Soc. 75(13), 3106–3111 (1953)CrossRefGoogle Scholar
  24. Vollhardt, K.P.C.: Organic Chemistry. W.H. Freeman and Co, New York (1987)Google Scholar
  25. Westheimer, F.H., Kharasch, M.S.: The kinetics of nitration of aromatic nitro compounds in sulfuric acid. J. Am. Chem. Soc. 68(10), 1871–1876 (1946)Google Scholar
  26. Winkler, C.A., Hinshelwood, C.N.: The thermal decomposition of acetaldehyde, In: Proceeding of the Royal Society A, vol. 149, pp. 355–359 (1935)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurochem Engineering s.r.l.MilanItaly
  2. 2.Dipartimento di Scienze Chimiche, Complesso di Monte Sant’AngeloUniversity of Naples Federico IINaplesItaly

Personalised recommendations