The Role of Catalysis in Promoting Chemical Reactions

  • Elio SantacesariaEmail author
  • Riccardo Tesser


Some fundamental aspects of the catalytic phenomenon are described in the introductory part of this chapter. Next, some different catalyst classifications are described based on catalytic action (acid–base, redox, metallorganic, and enzymatic) or catalytic environment (homogeneous and heterogeneous). Different aspects of homogeneous catalysis are examined in detail considering acid–base catalysis, catalysis promoted by metal transition complexes, and enzymatic catalysis. Heterogeneous catalysis is then examined describing gas–solid interactions in particular and adsorption isotherms useful for determining gas–solid interface area. Different heterogeneous catalysts are described, such as acid–base solid catalysts based on metal oxides and their mixtures, metal oxide catalysts acting as semiconductors, zeolites, and unsupported and supported metal catalysts. The most commonly employed supports are described together with techniques for their preparation and impregnation. Finally, catalyst-forming procedures are briefly described. Some exercises and associated Matlab code are provided online.

Supplementary material

419170_1_En_3_MOESM1_ESM.doc (56 kb)
Supplementary material 1 (DOC 63 kb)


  1. Anderson, R.B.: Experimental Methods in Catalytic Research. Academic Press, New York (1968)Google Scholar
  2. Anderson, J.R.: Structure of Metallic Catalysis. Academic Press (1975)Google Scholar
  3. Barrer, R.M.: Zeolites and clay Minerals as Sorbents and Molecular Sieves. Academic Press, London (1978)Google Scholar
  4. Beek, O.: Hydrogenation Catalysts. Discuss. Faraday Soc. 8, 118–128 (1950)CrossRefGoogle Scholar
  5. Boudart, M.: Heterogeneous catalysis by metals. J. Mol. Catal. 30, 27–38 (1985)CrossRefGoogle Scholar
  6. Breck, D.W.: Zeolite Molecular Sieves: Structure, Chemistry and Use. Wiley-Interscience, London-New York (1974)Google Scholar
  7. Brønsted, J.N.: Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pays-Bas. 42(8), 718–728 (1923)Google Scholar
  8. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRefGoogle Scholar
  9. Brunelle, J.P.: Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50, 1211 (1978)Google Scholar
  10. Clerici, M.: Oxidation of saturated hydrocarbons with hydrogen peroxide, catalyzed by titanium silicalite. Appl. Catal. 68(1–2), 249–261 (1991)CrossRefGoogle Scholar
  11. Clerici, M., Ingallina, P.: Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J. Catal. 140, 71 (1993)CrossRefGoogle Scholar
  12. Courty, Ph., Duhaut, P.: Rev. Inst. Franc. Du Petrole XXIX-6, 861 (1974)Google Scholar
  13. Doesburg, E.B.M., van Hoof, J.H.C.: Preparation of catalyst supports and zeolites in catalysis in an integrated approach to homogeneous. In: Moullijn, J.A., van Leeuven, P.W.N.M., van Santen R.A. Chapter 8 in Heterogeneous and Industrial Catalysis. Elsevier, Amsterdam (1993)Google Scholar
  14. Dollimore, D., Heal, G.L.: An improved method for the calculation of pore-size distribution from adsorption data. J. Appl. Chem. 14, 109–114 (1964)CrossRefGoogle Scholar
  15. Dollimore, D., Heal, G.L.: Pore-size distribution in typical adsorbent systems. J. Colloid Interf. Sci. 33(4), 508–519 (1970)CrossRefGoogle Scholar
  16. Gerasimov, Y.A., Dreving, V., Eremin, E., KIselev, A., Lebedev, V., Panchenkov, G., Shlygin, A.: Physical Chem. 1 (1974). (MIR Pu. Moscow)Google Scholar
  17. Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Syst. Charact. 23, 1–11 (2006)CrossRefGoogle Scholar
  18. Halsey, G.: Physical adsorption in non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)CrossRefGoogle Scholar
  19. Hammett, L.P., Deyrup, A.J.: A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. 54(7), 2721–2739 (1932)Google Scholar
  20. Hasselbalch, K.A.: Die Berechnung der Wasserstoffzahl des Blutes aus derfreien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift 78, 112–144 (1916)Google Scholar
  21. Henderson, L.J.: Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 21, 173–179 (1908)Google Scholar
  22. Jacobs, P.A., Beyer, H.K., Valyon, J.: Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents. Zeolites 1, 161–168 (1981)CrossRefGoogle Scholar
  23. Kapteijn, F., Nijhuis, T.A., Heiszwolf, J.J., Moulijn, J.A.: New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 66(2–4), 133–144 (2001)CrossRefGoogle Scholar
  24. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids J. Am. Chem. Soc. 38(11), 2221–2295 (1916)CrossRefGoogle Scholar
  25. Le Page, J.F., Miller, R.L., Miller, E.B., Limido, J.: Applied Heterogeneous Catalysis, Design, Manufacture, Use of Solid Catalysts. Edition Technip, Paris (1987)Google Scholar
  26. Lewis, G.N.: Valence and the Structure of Atoms and Molecules. Chemical Catalog Co., New York (1923)Google Scholar
  27. Millini, R., Massaro, E., Perego, G., Bellussi, G.: Framework composition of titanium silicalite. J. Catal. 137(2), 497–503 (1992)CrossRefGoogle Scholar
  28. Nielsen, J.E., Borchert, T.V.: Protein engineering of bacterial α-amylases. Biochem. Biophys. Acta. 1543, 253–274 (2000)PubMedGoogle Scholar
  29. Notari, B.: Innovation in zeolite material science. Synthesis and catalytic properties of titanium containing zeolites. Study Surf. Sci. Catal. 37, 413 (1988)CrossRefGoogle Scholar
  30. Oblad, A.G., Milliken, T.H., Mills, G.D.: Chemical characteristics and Structure of Cracking Catalysts; Advances in Catalysis, vol. 3. Academic, New York (1951)Google Scholar
  31. Parravano, G.: The catalytic oxidation of carbon monoxide on nickel oxide. I. pure nickel oxide. J. Am. Chem. Soc. 75(6), 1448–1451 (1953)CrossRefGoogle Scholar
  32. Perego, C., Villa, P.: Catalysts preparation methods. Catal. Today 34, 281–305 (1997)CrossRefGoogle Scholar
  33. Peri, J.B.: A model for the surface of γ-alumina. J. Phys. Chem. 69(1), 220 (1965)Google Scholar
  34. Piccin, J.S., Dotto, G.L., Pinto, L.A.A.: Adsorption isotherms and thermochemical data of FD&C red n° 40 binding by Chitosan. Braz. J. Chem. Eng. 28(2), 295–304 (2011)CrossRefGoogle Scholar
  35. Prieto, M.A., Biarnes, X., Vidossich, P.: The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 131(33), 11751–11761 (2009)CrossRefGoogle Scholar
  36. Richardson, J.T.: Principles of Catalysts Development. Springer Science (1992)Google Scholar
  37. Romano, U., Esposito, A., Maspero, F., Neri, F., Clerici, M.: New developments in selective oxidation. Study Surf. Sci. Catal. 55, 33 (1990)CrossRefGoogle Scholar
  38. Smith, J.M.: Chemical Engineering Kinetics. Mc Graw-Hill Book Co., New York (1981)Google Scholar
  39. Tanabe, K.: Solid Acids and Bases. Kodansha Tokio and Academic Press, New York (1970)CrossRefGoogle Scholar
  40. Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T.: A new hypothesis regarding the surface acidity of binary metal oxides. Bull. Chem. Soc. Jpn 47(5), 1064 (1974)Google Scholar
  41. Taylor, H.S.: A theory of the catalytic surface. Proc. Royal Soc. A Math. Phys. Eng. Sci. 108(745), 105–111 (1925)CrossRefGoogle Scholar
  42. Thomson, W., Kelvin, L.: On the equilibrium of vapour at a curved surface of liquid. Philos. Mag. 42, 448 (1871)CrossRefGoogle Scholar
  43. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273 (1921)Google Scholar
  44. Wheeler, A.: Reaction rates and selectivity in catalyst pores in catalysis. In: Emmet, P.H. (ed.) Rheinold, Vol. II, p. 105. New York (1955)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurochem Engineering s.r.l.MilanItaly
  2. 2.Dipartimento di Scienze Chimiche, Complesso di Monte Sant’AngeloUniversity of Naples Federico IINaplesItaly

Personalised recommendations