Advertisement

Thermodynamics of Physical and Chemical Transformations

  • Elio SantacesariaEmail author
  • Riccardo Tesser
Chapter

Abstract

In this chapter, physical and chemical transformations are considered as a route from a less stable to a more stable equilibrium state. Initially, only physical transformations are considered describing the first and second thermodynamic laws and thermodynamic properties like internal energy, enthalpy, and entropy. Next, thermodynamic equilibrium in chemically reacting systems is considered, defining “chemical potential” as the driving force for reactions and examining in detail chemical equilibrium conditions. Equilibrium reactions between gases at different pressures are considered and the fugacity concept to describe the behavior of real gases is introduced. Different methods for determining and fugacity are described. Equilibrium reactions between reactants in the liquid phase are also considered, introducing the concept of activity. Different methods for determining activity coefficients are described. Several examples of equilibrium calculations are reported. Matlab code associated with these examples is available online. Finally, vapor–liquid equilibrium is examined in detail considering its applications in a flash-unit and a tray-distillation column.

Supplementary material

419170_1_En_2_MOESM1_ESM.doc (152 kb)
Supplementary material 1 (DOC 190 kb)

References

  1. Abrams, D., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures. A new expression for the excess Gibbs energy of partly and completely miscible systems. AIChE J. 21, 116–128 (1975)CrossRefGoogle Scholar
  2. Ambrose, D.: Correlation and estimation of vapor-liquid critical properties I. Critical temperatures of organic compounds. NPL Rep. Chem. 92, National Physical Laboratory, Teddington, UK (1978)Google Scholar
  3. Ambrose, D.: Vapor-liquid critical properties II. Critical pressure and critical volume. NPL Rep. Chem. 107, National Physical Laboratory, Teddington, UK (1980)Google Scholar
  4. Anderson, J.W., Beyer, G.H., Watson, K.M.: Natl. Petrol News 36, R476–R483 (1944)Google Scholar
  5. Bertucco, A., Barolo, M., Soave, G.: Estimation of chemical equilibria in high-pressure gaseous systems by a modified Redlich-Kwong-Soave equation of state. Ind. Eng. Chem. Res. 34(9), 3159–3165 (1995)CrossRefGoogle Scholar
  6. Bodenstein, M.: Zersetzung und Bildung von Jodwasserstoff; Z. Physik. Chem., 22 (1897)Google Scholar
  7. Carrà, S.: La Produzione Chimica: Processi e Operazioni Unitarie; ISEDI, Enciclopedia della Chimica (1977)Google Scholar
  8. Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40(10), 1697–1710 (1994)CrossRefGoogle Scholar
  9. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Phys. Z. 24, 185–206 (1923)Google Scholar
  10. Dyson, D.C., Simon, J.M.: A kinetic expression with diffusion correction for ammonia synthesis on industrial catalyst. Ind. Eng. Chem. Fundam. 7(4), 605 (1986)CrossRefGoogle Scholar
  11. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)CrossRefGoogle Scholar
  12. Francis, A.W.: The free energies of some hydrocarbons. Ind. Eng. Chem. 20(3), 277–282 (1928)Google Scholar
  13. Franklin, J.L.: Prediction of heat and free energies of organic compounds. Ind. Eng. Chem. 41, 1070–1076 (1949)Google Scholar
  14. Fredenslund, A.A., Russell, L.J., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21(6), 1086–1099 (1975)CrossRefGoogle Scholar
  15. Fredenslund, A.A., Gmehling, J., Rasmussen, P.: Vapor-Liquid equilibria using UNIFAC, a group contribution method. Elsevier Scientific Pu. Co., Amsterdam (1977)Google Scholar
  16. Gerasimov, Y.A., Dreving, V., Eremin, E., Kiselev, A., Lebedev, V., Panchenkov, G., Shlygin, A.: Physical Chemistry, Vol. I. MIR Publisher, Moscow (1974)Google Scholar
  17. Gillespie, L.J., Beattie, J.A.: The thermodynamic treatment of chemical equilibria in systems composed of real gases. I. An approximate equation for the mass action function applied to the existing data on the Haber equilibrium. Phys. Rev. 36, 743 (1930)CrossRefGoogle Scholar
  18. Glasstone, S.: Thermodynamics for Chemistry. Van Nostrand, New York (1947)Google Scholar
  19. Guéret, C., Daroux, M., Billaud, F.: Methane pyrolysis: thermodynamics. Chem. Eng. Sci. 52(5), 815–827 (1997)CrossRefGoogle Scholar
  20. Hayden, J.G., O’Connel, J.P.: A generalized method for predicting second virial coefficients. Ind. Eng. Chem. Proc. Des. Dev. 14(3), 209–216 (1975)CrossRefGoogle Scholar
  21. Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold Co., New York (1970)Google Scholar
  22. Hougen, O.A., Watson, K.M.: Chemical Process Principles, Part Two: Thermodynamics. Wiley, New York (1947)Google Scholar
  23. Huggins, M.L.: Solutions of long-chain compounds. J. Chem. Phys. 9, 440 (1941)CrossRefGoogle Scholar
  24. Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group contributions. Chem. Eng. Commun. 57, 233–243 (1987)CrossRefGoogle Scholar
  25. Kammerlingh Onnes, H.: Expression of the equation of state of gases and liquids by means of serie. Communications from the Physical Laboratory of the University of Leiden 71, pp. 3–25 (1901)Google Scholar
  26. Kay, W.B.: Density of hydrocarbon. Ind. Eng. Chem. 28, 1014 (1936)Google Scholar
  27. Kojima, K., Tochigi, K.: Prediction of Vapor-Liquid Equilibria by the ASOG Method. Kodanska ltd, Elsevier (1979)Google Scholar
  28. Larson, A.T.: The ammonia equilibrium at high pressure. J. Am. Chem. Soc. 46, 367–372 (1924)CrossRefGoogle Scholar
  29. Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21(3), 510–527 (1975)CrossRefGoogle Scholar
  30. Lewis, G.N.: The law of physico-chemical change. Proc. Am. Acad. Arts Sci. 37(4), 49–69 (1901)CrossRefGoogle Scholar
  31. Lewis, G.N., Randall, M.: Thermodynamics, 2nd edn (Revised by Pitzer, K.S., Brewer, L.). Mc Graw-Hill, New York (1961)Google Scholar
  32. Lowry, T.M.: The Uniqueness of hydrogen. J. Soc. Chem. Ind. 42(3), 43–47 (1923)CrossRefGoogle Scholar
  33. Lydersen, A.L.: Estimation of critical properties of organic compounds. Coll. Eng. Univ. Wisconsin, Engineering Experimental Station Rept. 3, Madison, WI (1955)Google Scholar
  34. Margules M.: Über die Zusammensetzung der gesättigten Dämpfe von ischungen. Sitzungsberichte der Kaiserliche Akadamie der Wissenschaften Wien Mathematisch-Naturwissenschaftliche Klasse II. 104, 1243–1278 (1895)Google Scholar
  35. Mc Cann, D.W., Danner, R.P.: Prediction of second virial coefficients of organic compounds by a group contribution method 23(3), 529–533 (1984)Google Scholar
  36. Neumann, B., Kohler, G.: Die Gleichgewitchtsverhaltnisse bei der Wassergasreaktion im Temperaturbereich von 300 bis 1000°. Z. Elektrochem. 34, 218–237 (1928)Google Scholar
  37. Peneloux, A., Rauzy, E., Fréze, R.: A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 8(1): 7–23 (1982)Google Scholar
  38. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64(1976)Google Scholar
  39. Pitzer, K.S.: The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients. J. Am. Chem. Soc. 77, 3427–3433 (1955)CrossRefGoogle Scholar
  40. Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Rev. Chem. 44(1), 233–244 (1949)Google Scholar
  41. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases & Liquids. Mc Graw Hill, New York (1987)Google Scholar
  42. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14(1), 135–144 (1968)CrossRefGoogle Scholar
  43. Rihani, D.N., Doraiswamy, L.K.: Estimation of heat capacity of organic compounds from group contributions. Ind. Eng. Chem. Fundam. 4(1), 17–21 (1965)Google Scholar
  44. Rossini, F.D, Pitzer, K.S., Arnett, R.L., Braun, R.M., Pimentel, G.C.: API Project 44, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. Carnegie Press, Pittsburg (1953)Google Scholar
  45. Scatchard, G.: Equilibrium in non-electrolyte mixtures. Chem. Rev. 44(1), 7–35 (1949)CrossRefGoogle Scholar
  46. Scott, R.L.: Corresponding states treatment of nonelectrolyte solutions. J. Chem. Phys. 25, 193 (1956)CrossRefGoogle Scholar
  47. Smith, B.D.: Thermodynamic excess property measurements for acetonitrile-benzene-n-heptane system at 45°C. J. Chem. Eng. Data 17, 71–76 (1972)Google Scholar
  48. Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203 (1972)Google Scholar
  49. Soave, G., Barolo, M., Bertucco, A.: Estimation of high-pressure fugacity coefficients of pure gaseous fluids by a modified SRK equation of state. Fluid Phase Equilib. 91, 87–100 (1993)CrossRefGoogle Scholar
  50. Standing, M.B., Katz, D.L.: Density of natural gases. Trans. AIME 146, 140–149 (1942)CrossRefGoogle Scholar
  51. Stull, D.R., Westrum, E.F., Sinke, G.C.: The Chemical Thermodynamics of Organic Compounds. Wiley, New York (1969)Google Scholar
  52. Su, G.J.: Modified law of corresponding states for real gases. Ind. Eng. Chem. 38, 803–806 (1946)CrossRefGoogle Scholar
  53. Tsonopoulos, C.: An empirical correlation of second virial coefficients. A.I.Ch.E. J. 20, 263 (1974)Google Scholar
  54. Vancini, C.A.: Synthesis of Ammonia. The Macmillan Press, London (1971)Google Scholar
  55. Van Krevelen, D.W., Chermin, H.A.: Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem. Eng. Sci. 1, 66–80 (1951)Google Scholar
  56. Van Laar, J.J.: The vapor pressure of binary mixtures. Z. Phys. Chem. 72, 723 (1910)Google Scholar
  57. Van Ness, H.C., Abbott M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. Mc Graw-Hill, New York (1982)Google Scholar
  58. Verma, K.K., Doraiswamy, L.K.: Estimation of heats of formation of organic compounds. Ind. Eng. Chem. Fundamen. 4(4), 389–396 (1965)Google Scholar
  59. Wallace, F.J., Linning, W.A.: Basic Engineering Thermodynamics. Pitman Paperbacks (1970)Google Scholar
  60. Wilson, G.M.: Vapor-liquid equilibrium. xi. a new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86(2), 127–130 (1964)Google Scholar
  61. Wisniak, Y.: Émile-Hilaire Amagat and the laws of fluids. Educacion Quimica 17(1), 86–96 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurochem Engineering s.r.l.MilanItaly
  2. 2.Dipartimento di Scienze Chimiche, Complesso di Monte Sant’AngeloUniversity of Naples Federico IINaplesItaly

Personalised recommendations