Ocimum Species: A Longevity Elixir

  • Aakanksha Pant
  • Rakesh PandeyEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Aging is a major risk factor associated with the period of morbidity and pain at a later stage of life. Although the average age for initiation of morbidity has delayed, chronic diseases like hypertension, cancer, diabetes, and neurodegenerative disorders are still prevalent in affluent aging societies leading to death. Therefore, studying dietary interventions and pathology of aging can prove as an essential strategy for achieving healthy aging. The recent researches demonstrated an association of aging with remarkable elevation in intracellular reactive oxygen species (ROS) and stress. The plant-based molecules have successfully modulated lifespan and stress level across various species. These phytomolecules are secondary plant metabolites which play a major role in plant defence network and are synthesized as side tracks of plant’s primary metabolism. Despite the recently discovered potential of some phytomolecules in alleviating age-related stress, antiaging and stress modulatory potential of most of them is still unraveled. The natural dietary intervention modulating lifespan and health span in model organisms should be vastly studied for improving later life health. The free-living soil nematode, Caenorhabditis elegans, provides a unique and expedient platform for studying pharmacological interventions and dissecting the genetic mechanism underlying aging. The present chapter highlights the medicinal and therapeutic potential of the various Ocimum species which is commonly known as the “Queen of the herbs.” The antioxidant and antiaging potential of phytomolecules and extracts derived from this genus is thoroughly reported. Basil is the rich repository of many bioactive molecules such as monoterpenes, sesquiterpenes, phenylpropanoids, anthocyanins, and phenolic acids; therefore, the longevity-promoting potential of this herb is highlighted in the present chapter. Furthermore, special attention is given to the employment of C. elegans model system for screening various phytochemicals isolated from Ocimum spp.


Ocimum spp Antiaging Caenorhabditis elegans Bioactive molecules 


  1. Abbas S, Wink M (2009) Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 75(3):216–221CrossRefGoogle Scholar
  2. Asthana J, Pant A, Yadav D, Lal R, Gupta M et al (2015a) Ocimum basilicum (L.) and Premna integrifolia (L.) modulate stress response and lifespan in Caenorhabditis elegans. Indust Crops Prod 76(8):1086–1093CrossRefGoogle Scholar
  3. Asthana J, Yadav D, Pant A, Yadav A, Gupta M et al (2015b) Acacetin 7-O-α-l-rhamnopyranosyl (1–2) β-D-xylopyranoside elicits life-span extension and stress resistance in Caenorhabditis elegans. J Gerontol Ser A: Biol Sci Med Sci 71(9):1160–1168CrossRefGoogle Scholar
  4. Asthana J, Yadav AK, Pant A, Pandey S, Gupta MM et al (2015c) Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 169:25–34Google Scholar
  5. Bahrami SA, Bakhtiari N (2016) Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother 82(8):8–14CrossRefGoogle Scholar
  6. Baseer M, Jain K (2016) Review of botany, phytochemistry, pharmacology, contemporary applications and toxicology of Ocimum sanctum. Int J Pharm Life Sci 7(2):4918–4929Google Scholar
  7. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Age Dev 128(10):546–552CrossRefGoogle Scholar
  8. Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190(2):191–202CrossRefGoogle Scholar
  9. Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S et al (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn-a review. Int J Curr Res Rev 4(23):73–83Google Scholar
  10. Blagosklonny MV (2009) Validation of anti-aging drugs by treating age-related diseases. Aging 1(3):281–288CrossRefGoogle Scholar
  11. Bora KS, Arora S, Shri R (2011) Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J Ethnopharmacol 137(3):1360–1365CrossRefGoogle Scholar
  12. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  13. Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85(3):620–628CrossRefGoogle Scholar
  14. Chao PY, Lin JA, Ting WJ, Lee HH, Hsieh K et al (2016) Ocimum gratissmum aqueous extract reduces plasma lipid in hypercholesterol-fed hamsters. Int J Med Sci 13(11):819–824CrossRefGoogle Scholar
  15. Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC (2005) Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmac Physiol 32(10):811–816CrossRefGoogle Scholar
  16. Chopra A, Doiphode VV (2002) Ayurvedic medicine: core concept, therapeutic principles, and current relevance. Med Clin North Am 86(1):75–89CrossRefGoogle Scholar
  17. Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70(3):491–499CrossRefGoogle Scholar
  18. da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC et al (2016) A synopsis on aging—theories, mechanisms and future prospects. Age Res Rev 29:90–112CrossRefGoogle Scholar
  19. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agri 80(12):1744–1756CrossRefGoogle Scholar
  20. Fischer B, van Doorn GS, Dieckmann U, Taborsky B (2014) The evolution of age-dependent plasticity. Am Nat 183(1):108–125CrossRefGoogle Scholar
  21. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118(1):75–86PubMedPubMedCentralGoogle Scholar
  22. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J et al (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112PubMedPubMedCentralGoogle Scholar
  23. Gille E, Danila D, Stanescu U, Hancianu M (2007) The phytochemical evaluation of some extracts of Ocimum sp. Planta Med 73(09):374CrossRefGoogle Scholar
  24. Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99(2):165–178CrossRefGoogle Scholar
  25. Güez CM, Souza ROD, Fischer P, Leão MFDM, Duarte JA et al (2017) Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Braz J Pharmaceut Sci 53(1):1–12Google Scholar
  26. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27(1):1–93CrossRefGoogle Scholar
  27. Harman D (1955) Aging: a theory based on free radical and radiation chemistry. Sci Aging Knowl Environ 2002(37):298–300Google Scholar
  28. Harrington LA, Harley CB (1988) Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Age Dev 43(1):71–78CrossRefGoogle Scholar
  29. Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K et al (2011) Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS ONE 6(8):e23527CrossRefGoogle Scholar
  30. Jadoon S, Karim S, Asad MHHB, Akram MR, Kalsoom Khan A et al (2015) Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longetivity 3:1–12 2015Google Scholar
  31. Jakobsen H, Bojer MS, Marinus MG, Xu T, Struve C et al (2013) The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode’s innate immune response. PLoS ONE 8(3):e60519CrossRefGoogle Scholar
  32. Joshi RK (2017) Phytoconstituents, traditional, medicinal and bioactive uses of Tulsi (Ocimum sanctum Linn.): a review. J Pharmacognosy Phytochem 6(2):261–264Google Scholar
  33. Kampkötter A, Nkwonkam CG, Zurawski RF, Timpel C, Chovolou Y et al (2007) Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234(1):113–123CrossRefGoogle Scholar
  34. Karthikeyan K, Gunasekaran P, Ramamurthy N, Govindasamy S (1999) Anticancer activity of Ocimum sanctum. Pharmaceut Biol 37(4):285–290CrossRefGoogle Scholar
  35. Kavitha S, John F, Indira M (2015) Amelioration of inflammation by phenolic rich methanolic extract of Ocimum sanctum Linn. leaves in isoproterenol induced myocardial infarction. Indian J Exp Biol 53(10):632–640PubMedGoogle Scholar
  36. Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr Int Rev J 2(1):32–50CrossRefGoogle Scholar
  37. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512CrossRefGoogle Scholar
  38. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464CrossRefGoogle Scholar
  39. Khan S, Balick MJ (2001) Therapeutic plants of Ayurveda: a review of selected clinical and other studies for 166 species. J Alt Comp Med 7(5):405–515CrossRefGoogle Scholar
  40. Khosla M (1995) Sacred tulsi (Ocimum sanctum L.) in traditional medicine and pharmacology. Anc Sci Life 15(1):53PubMedPubMedCentralGoogle Scholar
  41. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447CrossRefGoogle Scholar
  42. Kumar V, Andola HC, Lohani H, Chauhan N (2011) Pharmacological review on Ocimum sanctum Linnaeus: a queen of herbs. J Pharm Res 4(2):366–368Google Scholar
  43. Lewis WH, Elvin-Lewis MP (1995) Medicinal plants as sources of new therapeutics. Ann Mo Bot Gard 82(1):16–24CrossRefGoogle Scholar
  44. Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC et al (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Age Dev 132(10):480–487CrossRefGoogle Scholar
  45. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2):57–68CrossRefGoogle Scholar
  46. Liu Z, Li X, Simoneau AR, Jafari M, Zi X (2012) Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carc 51(3):257–267CrossRefGoogle Scholar
  47. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM et al (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14(4):497–510CrossRefGoogle Scholar
  48. Malve HO, Raut SB, Marathe PA, Rege NN (2014) Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Int Med 5(4):209–215CrossRefGoogle Scholar
  49. Mondal S, Varma S, Bamola VD, Naik SN, Mirdha BR et al (2011) Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 136(3):452–456CrossRefGoogle Scholar
  50. Monga S, Dhanwal P, Kumar R, Kumar A, Chhokar V (2017) Pharmacological and physico-chemical properties of Tulsi (Ocimum gratissimum L.): An updated review. Pharma Innov 6(4):181–186Google Scholar
  51. Muralikrishnan G, Pillai S, Shakeel F (2012) Protective effects of Ocimum sanctum on lipid peroxidation and antioxidant status in streptozocin-induced diabetic rats. Nat Prod Res 26(5):474–478CrossRefGoogle Scholar
  52. Negi H, Shukla A, Khan F, Pandey R (2016) 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem Biophys Res Comm 480(4):539–543CrossRefGoogle Scholar
  53. Negi H, Saikia SK, Pandey R (2017) 3β-Hydroxy-urs-12-en-28-oic acid modulates dietary restriction mediated longevity and ameliorates toxic protein aggregation in C. elegans. J Gerontol Ser A: Biomed Sci Med Sci 72(12):1614–1619CrossRefGoogle Scholar
  54. Pandey R, Gupta S, Shukla V, Tandon S, Shukla V (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J Exp Biol 51:515–521PubMedGoogle Scholar
  55. Pant A, Pandey R (2015) Bioactive phytomolecules and aging in Caenorhabditis elegans. Healthy Aging Res 4(19):1–15Google Scholar
  56. Pant A, Saikia SK, Shukla V, Asthana J, Akhoon BA, Pandey R (2014) Beta-caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans. Exp Gerontol 57:81–95CrossRefGoogle Scholar
  57. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY et al (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47(2):170–178CrossRefGoogle Scholar
  58. Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R et al (2011) Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid-and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12(4):329–347CrossRefGoogle Scholar
  59. Pingale SS, Firke NP, Markandetya A (2012) Therapeutic activities of Ocimum tenuiflorum accounted in last decade: a review. J Pharm Res 5(4):2215–2220Google Scholar
  60. Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011) The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46(6):441–452CrossRefGoogle Scholar
  61. Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 49(2):659–666Google Scholar
  62. Rai D, Bhatia G, Sen T, Palit G (2003) Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci 93(4):458–464CrossRefGoogle Scholar
  63. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A et al (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20(12):522–531CrossRefGoogle Scholar
  64. Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Rad Res 40(12):1230–1238CrossRefGoogle Scholar
  65. Rege A, Chowdhary AS (2014) Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int J Pharmaceut Sci Re Res 25(1):315–318Google Scholar
  66. Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CE (2009) Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130(8):477–486CrossRefGoogle Scholar
  67. Shukla V, Yadav D, Phulara SC, Gupta M, Saikia SK, Pandey R (2012) Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Rad Biol Med 53(10):1848–1856CrossRefGoogle Scholar
  68. Srivastava D, Arya U, SoundaraRajan T, Dwivedi H, Kumar S, Subramaniam JR (2008) Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9(5):309–316CrossRefGoogle Scholar
  69. Tissenbaum HA (2015) Using C. elegans for aging research. Inv Repro Dev 59(12):59–63CrossRefGoogle Scholar
  70. Wang F, Liu QD, Wang L, Zhang Q, Hua ZT (2012) The molecular mechanism of rosmarinic acid extending the lifespan of Caenorhabditis elegans. App Mech Mat 140(11):469–472Google Scholar
  71. Wilson MA, Shukitt Hale B, Kalt W, Ingram DK, Joseph JA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5(1):59–68CrossRefGoogle Scholar
  72. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689CrossRefGoogle Scholar
  73. Wu Z, Smith JV, Paramasivam V, Butko P, Khan I (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 48(6):725–731PubMedGoogle Scholar
  74. Yu YB, Dosanjh L, Lao L, Tan M, Shim BS (2010) Cinnamomum cassia bark in two herbal formulas increases life span in Caenorhabditis elegans via insulin signaling and stress response pathways. PLoS ONE 5(2):e9339CrossRefGoogle Scholar
  75. Zhang J, Lu L, Zhou L (2015) Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem Biophys Res Comm 468(4):843–849CrossRefGoogle Scholar
  76. Zhang L, Jie G, Zhang J, Zhao B (2009) Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Rad Bio Med 46(3):414–421CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Microbial Technology and Nematology DepartmentCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia

Personalised recommendations