Breeding and Genomic Approaches for Climate-Resilient Garlic

  • Anil KharEmail author
  • Sho Hirata
  • Mostafa Abdelrahman
  • Masayoshi Shigyo
  • Hira Singh


Garlic (Allium sativum L.) has a long history of cultivation by asexual propagation. Due to its asexual nature, improvement of garlic has been limited as compared to onion. With the impending climate change, it is predicted that like all other crops, garlic cultivation will also suffer the consequences. Ninety percent of garlic is grown in Asia and increase in temperature will expose garlic to various biotic and abiotic stresses. To evolve against these stresses, quality improvement of garlic to withstand these stresses is of principal concern. Research work on creation of genetic diversity, collection of genetic resources, interspecific hybridization, and manipulation of flowering is needed through conventional techniques. Biotechnological approaches for garlic improvement through genetic transformation, marker-assisted selection, genomics-aided breeding, and other novel technologies may help in achieving higher yields under climate change scenarios. In this chapter, we have discussed various approaches and what has been done in these areas in different parts of the world to address the loss in crop yield which is likely to be caused by the biotic and abiotic stresses in the future.


Biotic resistance Abiotic stress tolerance Diversity evaluation Genetic resources Molecular breeding Genomics Allium sativum L. 


  1. Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito S, Tran LS (2016) Dissection of Trichoderma longibrachiatum induced-defense in onion (Allium cepa L.) against Fusariumoxysporum f. sp. cepae by target metabolite profiling. Plant Sci 246: 128e138PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito SI, Tanaka K, Mine Y, Sugiyama N, Suzuki M, Yamauchi N, Shigyo M (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12:e0181784PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S, Hirakawa H, Mine Y, Tanaka K, Shigyo M (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosumA. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 9: 3541Google Scholar
  4. Abo El-Nil MM (1977) Organogenesis and embryogenesis in callus culture of garlic (Allium sativum L.). Plant Sci Lett 9:259–264CrossRefGoogle Scholar
  5. Ahn YK, Yoon MK and Jeon JS (2013) Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.). Mol Cells 36(2):158–162PubMedPubMedCentralCrossRefGoogle Scholar
  6. Al-Safadi B, Mir AN and Arabi MIE (2000) Improvement of garlic (Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations. J Genet Breed 54(3):175–182Google Scholar
  7. Al-Zahim MA, Ford-Lloyd BV and Newbury HJ (1999) Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep 18(6):473–477CrossRefGoogle Scholar
  8. Arencibia AD, Carmona ER, Teller P, Chan MT, Yu SM, LE Trujilo S, Oamas P (1988) An efficient protocol for sugarcane (Saccharrum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgen Res 7:213–222CrossRefGoogle Scholar
  9. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218CrossRefGoogle Scholar
  10. Ayabe M, Sumi S (2001) A novel and efficient tissue culture method—”stem-disc dome culture”—for producing virus-free garlic (Allium sativum L.). Plant Cell Rep 20:503–507CrossRefGoogle Scholar
  11. Badran AE (2015) Comparative analysis of some garlic varieties under drought stress conditions. J Agri Sci 7(10):271Google Scholar
  12. Baitulin IO, Agafonova G, Rabinowitch HD, Kamenetsky R (2000) Creation of gene bank of Central Asian species of the genus Allium L., their biology and economic potential (in Russian). In: Granovsky EI, Fain EE (eds) State and perspectives of scientific collaboration Kazakhstan-Israel. Kazakhstan, Almaty, pp 87–94Google Scholar
  13. Barandiaran X, di Pietro A, Martin J, Di Pietro A (1998) Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L. Plant Cell Rep 17(9):737–741PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0). 27 Oct 2015.
  15. Bevan M, Waugh R (2007) Applying plant genomics to crop improvement. BioMed Central, London, UKGoogle Scholar
  16. Bideshki A, Arvin MJ, Darini M (2013) Interactive effects of Indole-3-butyric acid (IBA) and salicylic acid (SA) on growth parameters, bulb yield and allicin contents of garlic (Allium sativum) under drought stress in field. Intl J Agron Plant Product 4(2):271–279CrossRefGoogle Scholar
  17. Bradley KF, Rieger MA, Collins GG (1996) Classification of Australian garlic cultivars by DNA fingerprinting. Aust J Exp Agri 36:613–618CrossRefGoogle Scholar
  18. Brewster JL (1994) Onions and other vegetable Alliums. CAB International, Wallingford, UKGoogle Scholar
  19. Burba JL, Casali VW, Buteler MI (1993) Intensidad de la dormicioncomoparametrofisiologico para agruparcultivares de ajo (Allium sativum L.). Hort Argen 12(32):47–52Google Scholar
  20. Buso GS, Paiva MR, Torres AC, Resende FV, Ferreira MA, Buso JA, Dusi AN (2008) Genetic diversity studies of Brazilian garlic cultivars and quality control of garlic-clover production. Genet Mol Res 7:534–541PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cavagnaro PF, Camargo A, Piccolo RJ, Lampasona SG, Burba JL, Masuelli RW (2005a) Resistance to Penicillium hirsutum Dierckx in garlic accessions. Eur J Plant Pathol 112(2):195–199CrossRefGoogle Scholar
  22. Cavagnaro PF, Senalik D, Galmarini CR, Simon PW (2005b) Correlation of pungency, thiosulfinates, antiplatelet activity and total soluble solids in two garlic families. Annu Conf HortScience 40(4):1019CrossRefGoogle Scholar
  23. Chen S, Zhou J, Chen Q, Chang Y, Du J, Meng H (2013) Analysis of the genetic diversity of garlic (Allium sativum L.) germplasm by SRAP. Biochem Syst Ecol 50:139–146CrossRefGoogle Scholar
  24. Chen S, Chen W, Shen X, Yang Y, Qi F, Liu Y, Meng H (2014) Analysis of the genetic diversity of garlic (Allium sativum) by simple sequence repeat and inter simple sequence repeat analysis and agro-morphological traits. Biochem Syst Ecol 55:260–267CrossRefGoogle Scholar
  25. Conci V, Nome S (1991) Virus free garlic (Allium sativum L.) plants obtained by thermotherapy and meristem-tip culture. J Phytopathol 132:186–192CrossRefGoogle Scholar
  26. Conci V, Nome SF, Milne RG (1992) Filamentous viruses of garlic in Argentina. Plant Dis 76:594–596CrossRefGoogle Scholar
  27. Csiszár J, Lantos E, Tari I, Madosa E, Wodala B, Vashegy A, Horváth F, Pécsváradi A, Szabó M, Bartha B, Gallé Á (2007) Antioxidant enzyme activities in Allium species and their cultivars under water stress. Plant Soil Environ 53(12):517CrossRefGoogle Scholar
  28. Cunha CP, Hoogerheide ESS, Zucchi MI, Monteiro M, Pinheiro JB (2012) New microsatellite markers for garlic Allium sativum (Alliaceae). Amer J Bot 99:17–19CrossRefGoogle Scholar
  29. Cunha CP, Resende FV, Zucchi MI, Pinheiro JB (2014) SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica 142:419–431PubMedCrossRefPubMedCentralGoogle Scholar
  30. Diriba-Shiferaw G (2016) Review of management strategies of constraints in garlic (Allium sativum L.) production. J Agri Sci–Sri Lanka 11(3):186–207CrossRefGoogle Scholar
  31. Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101. Scholar
  32. Dugan FM (2007) Diseases and disease management in seed garlic: problems and prospects. Amer J Plant Sci Bioctechnol. 1:47–51Google Scholar
  33. Eady CC, Lister CE, Suo Y, Schaper D (1996) Transient expression of uidA constructs in in vitro onion (Allium cepa L.) cultures following particle bombardment and Agrobacterium-mediated DNA delivery. Plant Cell Rep 15:958–962PubMedPubMedCentralGoogle Scholar
  34. Eady C, Davis S, Farrant J, Reader J, Kenel F (2003) Agrobacterium tumefaciens-mediated transformation and regeneration of herbicide resistant onion (Allium cepa L.) plants. Ann Appl Biol 142:213–217CrossRefGoogle Scholar
  35. Eady CC, Davis S, Catanach A, Kenel F, Hunger S (2005) Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Plant Cell Rep 24:209–215PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ebi M, Kasai N, Masuda K (2000) Small inflorescence bulbils are best for micropropagation and virus elimination in garlic. HortScience 35:735–737CrossRefGoogle Scholar
  37. Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G (2017) Assessment of geneticdiversity and structure of largegarlic (Allium sativum) germplasmbank by diversityarraystechnology “Genotyping-by-Sequencing” platform (DArTseq). Front Genet 8:98. Scholar
  38. Etoh T (1985) Studies on the sterility in garlic, Allium sativum L. Mem Fac Agri Kagoshima Univ 21:77–132Google Scholar
  39. Etoh T, Simon PW (2002) Diversity, fertility and seed production of garlic. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, New York, pp 101–107CrossRefGoogle Scholar
  40. Etoh T, Watanabe H, Iwai S (2001) RAPD variation of garlic clones in the center of origin and the westernmost area of distribution. Mem Fac Agr Kagoshima Univ 37:21–27Google Scholar
  41. Ferrer E, Linares C, Gonzalez JM (2000) Efficient transient expression of the beta-glucuronidase reporter gene in garlic (Allium sativum L.). Agronomie 20:869–874CrossRefGoogle Scholar
  42. Fortiz EL, Paz AR, Espinosa1 MAG, Mascorro-Gallardo JM, Rangel EE (2013) Genetic transformation of garlic (Allium sativum L.) with tobacco chitinase and glucanase genes for tolerance to the fungus Sclerotium cepivorum. Afr J Biotechnol 12(22):3482–3492
  43. Francois LE (1994) Yield and quality response of salt-stressed garlic. Hort Sci 29:1314–1317CrossRefGoogle Scholar
  44. Fritsch R (2001) Taxonomy of the genus Allium: Contribution from IPK Gatersleben. Herbertia 56:19–50Google Scholar
  45. García-Lampasona S, Asprelli P, Burba JL (2012) Genetic analysis of a garlic (Allium sativum L.) germplasm collection from Argentina. Sci Hort 138:183–189CrossRefGoogle Scholar
  46. Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of gene enriched SNPs. Plant Genome 2:121–133CrossRefGoogle Scholar
  47. Haque MS, Hattori K (2017) Detection of viruses of Bangladeshi and Japanese garlic and their elimination through root meristem culture. Progressive Agric 28:55–63CrossRefGoogle Scholar
  48. Havey MJ, Ahn YK (2016) Single nucleotide polymorphisms and indel markers from the transcriptome of garlic. J Amer Soc Hort Sci 141(1):62–65CrossRefGoogle Scholar
  49. Hedrick UP (1972) Sturtevant’s Edible Plants of the World. Dover Publications. ISBN0-486-20459-6Google Scholar
  50. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:1–2CrossRefGoogle Scholar
  51. Hirata S, Abdelrahman M, Yamauchi N, Shigyo M (2016a) Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide. Genes Genet Syst 91:161–173PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hirata S, Abdelrahman M, Yamauchi N, Shigyo M (2016b) Characteristics of chemical components in genetic resources of garlic Allium sativum collected from all over the world. Genet Resour Crop Evol 63:35–45CrossRefGoogle Scholar
  53. Hornickova J, Velisek J, Ovesna J, Stavelikova H (2009) Distribution of S-alk(en)yl-L-cysteine sulfoxides in garlic (Allium sativum L.). Czech J Food Sci 27:232–235CrossRefGoogle Scholar
  54. Insunza V, Valenzuela A (1995) Control of Ditylenchus dipsaci on garlic (Allium sativum) with extracts of medicinal plants from Chile. Nematropica 25:35–41Google Scholar
  55. Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Amer Soc Hort Sci 128:24–252CrossRefGoogle Scholar
  56. Ipek M, Ipek A, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic based on AFLP markers. Theor Appl Genet 110:22–236CrossRefGoogle Scholar
  57. Ipek M, Ipek A, Simon PW (2008) Rapid characterization of garlic clones with locus-specific DNA markers. Turk J Agri For 32:357–362Google Scholar
  58. Ipek M, Sahin N, Ipek A, Cansev A, Simon PW (2015) Development and validation of new SSR markers from expressed regions in the garlic genome. Sci Agri 72:41–46. Scholar
  59. Jabbes N, Geoffriau E, Le Clerc V, Dridi B, Hannechi C (2011) Inter simple sequence repeat fingerprints for assess genetic diversity of Tunisian garlic populations. J Agri Sci 3:77–85Google Scholar
  60. Jardinaud MF, Souvre A, Alibert G (1993) Transient GUS gene expression in Brassica napus electroporated microspores. Plant Sci 93:177–184CrossRefGoogle Scholar
  61. Jo M, Ham I, Moe K, Kwon S, Lu F, Park Y, Kim W, Won M, Kim T, Lee E (2012) Classification of genetic variation in garlic (Allium sativum L.) using SSR markers. Aust J CropSci 6:625–631Google Scholar
  62. Jones HA, Mann LK (1963) Onions and Their Allies. Leonard Hill Books, LondonGoogle Scholar
  63. Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA (2004) Biosynthesis of the flavour precursors of onion and garlic. J Exp Bot 55(404):1903–1918PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kamenetsky R (1993) A living collection of Allium in Israel—problems of conservation and use. Diversity 9:24–26Google Scholar
  65. Kamenetsky R (2007) Garlic: botany and horticulture. Hort Rev 33:123–171Google Scholar
  66. Kamenetsky R, Rabinowitch DH (2001) Floral development in bolting garlic. Sexual Plant Reprod 13:23–241CrossRefGoogle Scholar
  67. Kamenetsky R, Rabinowitch HD (2002) Florogenesis. In: Rabinowitch HD, Currah L (eds) Allium Crop Sciences: Recent Advances. CAB International, Wallingford, UK, pp 31–57CrossRefGoogle Scholar
  68. Kamenetsky R, London Shafir I, Baizerman M, Khassanov F, Kik C, Rabinowitch HD (2004) Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Acta Hort 637:83–91CrossRefGoogle Scholar
  69. Kamenetsky R, London Shafir I, Khassanov F, Kik C, van Heusden AW, Vrielink-van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005a) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14:281–295CrossRefGoogle Scholar
  70. Kamenetsky R, London ShafirI, Khassanov F, Kik C, Van Heusden AW, Vrielink-Van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005b) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14(2): 281–295.CrossRefGoogle Scholar
  71. Kamenetsky R, Faigenboim A, Mayer E, Michael T, Gershberg Ch, Kimhi S, Esquira I, Shalom S, Eshe D, Rabinowitch HD, ShermanA (2015) Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 16:12Google Scholar
  72. Kehr AE, Schäffer GW (1976) Tissue culture and differentiation in garlic. HortScience 11:422–423Google Scholar
  73. Keller ERJ (2002) Cryopreservation of Allium sativum L. (Garlic). In: Towill LE, Bajaj YPS (eds) Cryopreservation of Plant Germplasm, vol 2. Springer, Berlin Heidelberg, Germany, pp 37–47CrossRefGoogle Scholar
  74. Keller ERJ, Senula A (2001) Progress in structuring and maintaining the garlic (Allium sativum) diversity for the European genres project. Acta Hort 555:189–193CrossRefGoogle Scholar
  75. Keller ERJ, Schubert L, Fuchs J (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kenel F, Eady C, Brinch S (2010) Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue. Plant Cell Rep 29:223–230PubMedCrossRefPubMedCentralGoogle Scholar
  77. Keurentjes JJ, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128PubMedCrossRefPubMedCentralGoogle Scholar
  78. Khanna HK, Raina SK (1999) Agrobacterium mediated transformation of Indica rice cultivars using binary and superbinary vectors. Aust J Plant Physiol 26:311–324Google Scholar
  79. Khar A (2012) Cross amplification of onion derived microsatellites and mining of garlic ESTdatabase for assessment of genetic diversity in garlic. Acta Hort 969:289–295CrossRefGoogle Scholar
  80. Khar A, Yadav RC, Yadav N, Bhutáni RD (2005) Transient gus expression studies in onion (Allium cepa L.) and garlic (Allium sativum L.). Akdeniz Universitesi Ziraat Fakultesi Dergisi 18:301–304Google Scholar
  81. Khar A, Asha Devi A, Lawande KE (2008) Analysis of genetic relationships among Indian garlic (Allium sativum L.) cultivars and breeding lines using RAPD markers. Indian J Genet 68:52–57Google Scholar
  82. Kim DW, Jung TS, Nam SH, Kwon HR, Kim A, Chae SH, Choi SH, Kim DW, Kim RN, Park HS (2009) GarlicESTdb: an online database and mining tool for garlic EST sequences. BMC Plant Biol 9(1):61PubMedPubMedCentralCrossRefGoogle Scholar
  83. King AM, Adams MJ, Lefkowitz E J, Carstens EB (Eds) (2012) Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. ElsevierGoogle Scholar
  84. Kondo T, Hasegawa H, Suszuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion (Allium cepa) ESTs reveals expressed sequence and genomic differences between monocot orders Asparagales and Poales. Plant Cell 16:114–125PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE 12:e0171254PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SR, Ratnadass A, Ricci P, Sarah JL (2015) Robust cropping systems to tackle pests under climate change. A review. Agron Sustain Dev 35(2):443–459CrossRefGoogle Scholar
  88. Lampasona GS, Martınez L, Burba JL (2003) Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132:115–119CrossRefGoogle Scholar
  89. Liu QQ, Zhang JL Wang ZY, Hong MM, Gu MH (1998) A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice (Oryza sativa L.). Acta Phytophysiol Sin 24:259–271Google Scholar
  90. Lu X, Ross CF, Powers JR, Aston DE, Rasco BA (2011) Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy. J Agri Food Chem 59:5215–5221CrossRefGoogle Scholar
  91. Ma Y, Wang HL, Zhang CJ, Kang YQ (1994) High rate of virus free plantlet regeneration via garlic scape tip culture. Plant Cell Rep 11:65–68Google Scholar
  92. Ma KH, Gwag JG, Zhao WG, Dixit A, Lee GA, Kim HH, Chung IM, Kim NS, Lee JS, Ji JJ (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hort 122:355–361CrossRefGoogle Scholar
  93. Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Eng 103:115–134Google Scholar
  94. Maaß HI, Klaas M (1995) Intraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor Appl Genet 91:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mangal JL, Singh RK, YadavAC Lal S, Pandey UC (1990) Evaluation of garlic cultivars for salinity tolerance. J Hort Sci 65(6):657–658CrossRefGoogle Scholar
  96. Manolio TA (2010) Genome wide association studies and assessment of the risk of disease. N Engl J Med 363:166–176PubMedCrossRefPubMedCentralGoogle Scholar
  97. Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genom 274:197CrossRefGoogle Scholar
  98. Mishra RK, Jaiswal RK, Kumar D, Saabale PR, Singh A (2014) Management of major diseases and insect pests of onion and garlic: a comprehensive review. J Plant Breed Crop Sci 6(11):160–170CrossRefGoogle Scholar
  99. Mostafa A, Sudisha J, El-Sayed M, Ito SI, Ikeda T, Yamauchi N, Shigyo M (2013) Aginsodie saponin a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6:274–280CrossRefGoogle Scholar
  100. Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Babu V, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2018) Adapting legume crops to climate change using genomic approaches. Plant, Cell Environ 42:6–19CrossRefGoogle Scholar
  101. Moyer S (1996) Garlic in health history and world cuisine. Suncoast Press, St. Petrsberg, FL, pp 1–36Google Scholar
  102. Nabulsi I, Al-Safadi B, Ali NM, Arabi MIE (2001) Evaluation of some garlic (Allium sativum L.) mutants resistant to white rot disease by RAPD analysis. Ann Appl Biol 138(2): 197–202CrossRefGoogle Scholar
  103. Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK (2016) Identification of novel source of resistance and differential response of Allium genotypes to purple blotch pathogen, Alternaria porri (Ellis) Ciferri. Plant Pathol J 32(6):519PubMedPubMedCentralCrossRefGoogle Scholar
  104. Newman T, de Bruijin FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255PubMedPubMedCentralCrossRefGoogle Scholar
  105. Novak FJ (1990) Allium tissue culture. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Vol II. CRC Press, Boca Raton, FL, USA, pp 233–250Google Scholar
  106. Novák FJ (1980) Phenotype and cytological status of plants regenerated from callus cultures of Allium sativum L. Z Pflanzenzeucht 84:250Google Scholar
  107. Ovesna J, Kucera L, Hornickova J, Svobodova L, Stavelikova H, Velisek J, Milella L (2011) Diversity of S-alk(en)yl cysteine sulphoxide content within a collection of garlic (Allium sativum L.) and its association with the morphological and genetic background assessed by AFLP. Sci Hort 129:541–547CrossRefGoogle Scholar
  108. Ovesná J, Leišová-Svobodová L, Kučera L (2014) Microsatellite analysis indicates the specific genetic basis of Czech bolting garlic. Czech J Genet Plant Breed 50:226–234CrossRefGoogle Scholar
  109. Panse R, Jain PK, Gupta A, Sasode DS (2013) Morphological variability and character association in diverse collection of garlic germplasm. Afr J Agri Res 8(23):2861–2869Google Scholar
  110. Park MY, Yi NR, Lee HY, Kim ST, Kim M, Park JH, Kim JK, Lee JS, Cheong JJ, Choi YD (2002) Generation of chlorsulfuron-resistant transgenic transgenic garlic plants (Allium sativum L.) by particle bombardment. Mol Breed 9:171–181CrossRefGoogle Scholar
  111. Peffley EB, Hou A (2000) Bulb-type onion introgressants possessing Allium fistulosum L. genes recovered from interspecific hybrid backcrosses between A. cepa L. and A. fistulosum L. Theor Appl Genet 100:528–534Google Scholar
  112. Peña-Iglesias A, Ayuso P (1982) Characterization of Spanish garlic viruses and their elimination by in vitro shoot apex culture. Acta Hort 127:183–193Google Scholar
  113. Pooler MR, Simon PW (1993a) Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 68:121–130CrossRefGoogle Scholar
  114. Pooler MR, Simon PW (1993b) Garlic flowering in response to clone, photoperiod, growth temperature and cold storage. HortScience 28:1085–1086CrossRefGoogle Scholar
  115. Porter DR, Jones HA (1932) Resistance of some of the cultivated species of Allium to pink root (Phoma terrestris). Phytopathology 23:290–298Google Scholar
  116. Rabinowitch HD, Zeltzer O (1984) Collection, preservation, characterization and evaluation of Allium species growing wild in Israel: Selected Examples. Eucarpia, 3rdAllium Symposium, Wageningen, The Netherlands. Sept 1984, pp 27–36Google Scholar
  117. Ramírez-Malagón R, Pérez-Moreno L, Borodanenko A, Salinas-González GJ, Ochoa-Alejo N (2006) Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell Tiss Org Cult 86:103–110CrossRefGoogle Scholar
  118. Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34PubMedCentralCrossRefGoogle Scholar
  119. Reddy KR, Hodges HF, Kimball BA (2000) Crop ecosystem responses to global climate change: cotton. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford, UK, pp 162–187CrossRefGoogle Scholar
  120. Robert U, Zel J, Ravnikar M (1998) Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Sci Hort. 73:193–202CrossRefGoogle Scholar
  121. Robinson RA (2007) Self-Organizing Agroecosystems. Sharebooks Publishing, ISBN 6980-9783634-1-3Google Scholar
  122. Robledo-Paz A, Cabrera Ponce JL, Villalobos Arámbula VM, Herrera Estrella L, Jofre Garfias AE (2004) Genetic transformation of garlic (Allium sativum L.) by particle bombardment. HortScience 39:1208–1211CrossRefGoogle Scholar
  123. Rout E, Nanda S, Nayak S, Joshi RK (2014) Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiol Mol Plant Pathol 85:15–24CrossRefGoogle Scholar
  124. Rout E, Nanda S, Joshi RK (2016) Molecular characterization and heterologous expression of a pathogen induced PR5 gene from garlic (Allium sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur J Plant Pathol 144(2):345–360CrossRefGoogle Scholar
  125. Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239PubMedCrossRefPubMedCentralGoogle Scholar
  126. Rubatzky VE, Yamaguchi M (1997) World vegetables: principles, production and nutritive values, 2nd edn. Chapman and Hall, New YorkCrossRefGoogle Scholar
  127. Sako I, Nakasome W, Okada K, Ohki S, Osaki T, Inouye T (1991) Yellow streak of rakkyo (Allium chinense G. Don). A newly recognized disease caused by garlic latent virus and onion yellow dwarf virus. Ann Phytopathol Soc Jpn 57:65–69CrossRefGoogle Scholar
  128. Sandhu SS, Brar PS, Dhall RK (2015) Variability of agronomic and quality characteristics of garlic (Allium sativum L.) ecotypes. SABRAO J Breed Genet 47(2):133–142Google Scholar
  129. Sawahel WA (2002) Stable genetic transformation of garlic plants using particle bombardment. Cell Mol Biol Lett 7:49–59PubMedPubMedCentralGoogle Scholar
  130. Schwartz H (2004) Botrytis, downy mildew and purple blotch of onion. Colorado State University Cooperative Extension No. 2.941Google Scholar
  131. Schwartz HF, Mohan SK (1995) Infectious biotic diseases. White Rot. In Mohan SK, Schwartz HF (eds) Compendium of onion and garlic diseases. American Phytopathological Society, pp 7–15Google Scholar
  132. Shaaf S, Sharma R, Kilian B, Walther A, Özkan H, Karami E, Mohammadi B (2014) Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran. Genet Resour. Crop Evol. Scholar
  133. Silenzi JC, Moreno AM, Lucero JC (1985) Effect of irrigation with saline water on sprouting of cloves of garlic cv. Colorado. IDIA No. 433–436, 17–21 (Horticultural Abstracts, 56, 4145)Google Scholar
  134. Son JH, Park KC, Lee S, Kim HH, Kim JH, Kim SH, Kim NS (2012) Isolation of cold-responsive genes from garlic, Allium sativum. Genes Genom 34:93–101. Scholar
  135. Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tiss Org. Cult 40:1–15CrossRefGoogle Scholar
  136. Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sugimoto H, Tsuneyoshi T, Tsukamoto M, Uragami Y, Etoh T (1991) Embryo-cultured hybrids between garlic and leek. Allium Improv Newsl 1:67–68Google Scholar
  138. Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sun X, Ma GQ, Cheng B, Li H, Liu SQ (2013) Identification of differentially expressed genes in shoot apex of garlic (Allium sativum L.) using Illumina sequencing. J Plant Stud 2:136Google Scholar
  140. Takagi H (1990) Garlic Allium sativum L. In: Brewster JL, Rabinowitch HD (eds) Onion and allied crops, vol III. Biochemistry, food science and minor crops. CRC Press, Boca Raton, FL, pp 109–146Google Scholar
  141. Thoen MP, Davila Olivas NH, Kloth KJ, Coolen S, Huang PP, Aarts MG, Bac-Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213:1346–1362PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ucman R, Zel J, Ravnikar M (1998) Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Sci Hort. 73(4):193–202CrossRefGoogle Scholar
  143. Valdez JG, Makuch MA, Ordovini AF, Masuelli RW, Overy DP, Piccolo RJ (2006) First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol 55(4):583CrossRefGoogle Scholar
  144. Vidal DBC, Mello MLS, Liig D (1993) Chromosome number and DNA content in cells of a biotechnologically selected somaclone of garlic (Allium sativum L.). Rev Brasil Genet 16:347–356Google Scholar
  145. Vieira RL, da Silva AL, Zaffari GR, Steinmacher DA, de Freitas Fraga HP, Guerra MP (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant 37:1733Google Scholar
  146. Volk GM, Henk AD, Richards CM (2004) Genetic diversity among U.S. garlic clones as detected using AFLP methods. J Amer Soc Hort Sci 129:559–569CrossRefGoogle Scholar
  147. Wang H, Li X, Liu X, Oiu Y, Song J, Zhang X (2016) Genetic diversity of garlic (Allium sativum L.) germplasm from China by fluorescent-based AFLP, SSR and InDel markers. Plant Breed. 135:743–750. Scholar
  148. Wani SH, Choudhary M, Kumar P, Akram NA, Surekha C, Ahmad P, Gosal SS (2018) Marker-assisted breeding for abiotic stress tolerance in crop plants. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, vol 3. Springer. Berlin, Heidelberg, Germany, pp 1–23Google Scholar
  149. Wei NS, We YF (1992) Identification of virus diseases and virus free meristem culture of garlic. Acta Univ Agri Bor Occid 20(1):76–81Google Scholar
  150. Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G (2012) Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the pathogenic fungus Botrytis porri. J Virol 86:6605–6619PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wu C, Wang M, Dong Y, Cheng Z, Meng H (2015) Growth, bolting and yield of garlic (Allium sativum L.) in response to clove chilling treatment. Sci Hort 194:43–52CrossRefGoogle Scholar
  152. Wu C, Wang M, Cheng Z, Meng H (2016) Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments. Biol Open 5(4):507–18. Scholar
  153. Xue HM, Araki H, Shi L, Yakuwa T (1991) Somatic embryogenesis and plant regeneration in basal plate- and receptacle-derived callus cultures garlic (Allium sativum L.). J Jpn Soc Hort Sci 60:627–634CrossRefGoogle Scholar
  154. Yanagino T, Sugawara E, Watanabe M, Takahata Y (2003) Production and characterization of an interspecific hybrid between leek and garlic. Theor Appl Genet 107(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zewde T, Fininsa C, Sakhuja PK, Ahmed S (2007) Association of white rot (Sclerotium cepivorum) of garlic with environmental factors and cultural practices in the North Shewa highlands of Ethiopia. Crop Protec 26: 1566e1573CrossRefGoogle Scholar
  156. Zewdie Y, Havey MJ, Prince JP, Jenderek MM (2005) The first genetic linkages among expressed regions of the garlic genome. J Amer Soc Hort Sci 130(4):569–574CrossRefGoogle Scholar
  157. Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130:46–54CrossRefGoogle Scholar
  158. Zheng SJ, Henken B, Ahn YK, Krens FA, Kik C (2004) The development of a reproducible Agrobacterium tumefaciens transformation system for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm (Spodoptera exigua Hübner). Mol Breed 14:293–307CrossRefGoogle Scholar
  159. Zilberman D, Lipper L, McCarthy N, Gordon B (2018) Innovation in response to climate change. In: Lipper L, McCarthy N, Zilberman D, Asfaw S, Branca G (eds) Climate smart agriculture. Springer, Cham, Switzerland, pp 49–74CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anil Khar
    • 1
    Email author
  • Sho Hirata
    • 2
  • Mostafa Abdelrahman
    • 3
    • 4
  • Masayoshi Shigyo
    • 2
  • Hira Singh
    • 1
  1. 1.Division of Vegetable ScienceICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.College of Agriculture, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
  3. 3.Botany Department, Faculty of ScienceAswan UniversityAswanEgypt
  4. 4.Arid Land Research CenterTottori UniversityTottoriJapan

Personalised recommendations