Advertisement

Genome-Assisted Improvement Strategies for Climate-Resilient Carrots

  • Adam Bolton
  • Magdalena Klimek-Chodacka
  • Emily Martin-Millar
  • Dariusz Grzebelus
  • Philipp W. SimonEmail author
Chapter
  • 56 Downloads

Abstract

Carrot is typically categorized as a cool-season vegetable crop that is grown globally with largest per capita production in Europe, but with significant increased production in warmer regions of Asia in the last 50 years. As a high-value vegetable with relatively long postharvest storage life, combined with a high nutritional value attributable to its familiar orange carotenoid pigments, continuing adaptation of carrot to diverse climatic conditions is critical. Traits important to past success and future progress in improving climate resilience depend on the broad genetic diversity of carrot. Classical and modern approaches readily lend themselves to carrot improvement, with significant application of genome-assisted breeding tools expected to expand future prospects of success.

Keywords

Daucus carota Cool-season vegetable Root crop Climate change Abiotic stress tolerance Biofortification 

References

  1. Acosta-Motos JR, Ortuño M, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M, Hernandez J (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18.  https://doi.org/10.3390/agronomy7010018CrossRefGoogle Scholar
  2. AhnY-J, SongN (2012) A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. HortScience47:143–148Google Scholar
  3. Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Amer Soc Hort Sci 132:525–529CrossRefGoogle Scholar
  4. Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirementand fertility restoration genes in carrot. Theor Appl Genet 126:415–423PubMedCrossRefGoogle Scholar
  5. Ali A, Matthews WC, Cavagnaro PF, Iorizzo M, Roberts PA, Simon PW (2013) Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J Hered105:288–291PubMedCrossRefGoogle Scholar
  6. Algarra M, Fernandes A, Mateus N, de Freitas V, Esteves da Silva JCG, Casado J (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas. Spain. J Food Compos Anal 33:71–76.  https://doi.org/10.1016/j.jfca.2013.11.005CrossRefGoogle Scholar
  7. Allender C (2019) Genetic resources for carrot improvement. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 93–100CrossRefGoogle Scholar
  8. Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum desf.). Plant Soil 231:243–254.  https://doi.org/10.1023/A:1010378409663CrossRefGoogle Scholar
  9. Amirsadeghi S, McDonald A, Vanlerberghe G (2007) A glucocorticoid-inducible gene expression system can cause growth defects in tobacco. Planta 226:453–463.  https://doi.org/10.1007/s00425-007-0495-1CrossRefPubMedGoogle Scholar
  10. Annon A, Rathore K, Crosby K (2014) Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. Vitro Cell Dev Biol—Plant 50:299–306.  https://doi.org/10.1007/s11627-013-9590-0CrossRefGoogle Scholar
  11. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701CrossRefPubMedGoogle Scholar
  12. Arango J, Jourdan M, Geoffriau E et al (2014) Carotenehydroxylase activity determines the levels of bothalpha-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr Rev Food Sci Food Saf 9:223–239CrossRefGoogle Scholar
  14. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391.  https://doi.org/10.1104/pp.106.082040CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216.  https://doi.org/10.1016/j.envexpbot.2005.12.006CrossRefGoogle Scholar
  16. Bach IC, Olesen A, Simon PW (2002) PCR-basedmarkers to differentiate the mitochondrial genome ofpetaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365CrossRefGoogle Scholar
  17. Bado S, Forster B, Ghanim A, Jankowicz-Cieslak J, Berthold J, Luxiang L (2016) Protocols for pre-field screening of mutants for salt tolerance in rice, wheat and barley. Springer Internat PubGoogle Scholar
  18. Banasiak Ł, Wojewódzka A, Baczyński J, Reduron J-P, Piwczyński M, Kurzyna-Młynik R, Gutaker R, Czarnocka-Cieciura A, Kosmala-Grzechnik S, Spalik K (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65:563–585CrossRefGoogle Scholar
  19. Banga O (1957a) Origin of the European cultivated carrot. Euphytica 6:54–63Google Scholar
  20. Banga O (1957b) The development of the original European carrot material. Euphytica 6:64–76Google Scholar
  21. Banga O (1963) Main Types of the Western Carotene Carrot and Their Origin. W.E.J, Tjeenk Willink, Zwolle, The NetherlandsGoogle Scholar
  22. Bano S, Ashraf M, Akram N (2014) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Plant-Environ Interact 9:324–329.  https://doi.org/10.1080/17429145.2013.832426CrossRefGoogle Scholar
  23. Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Transgen Plant J 2:18–38Google Scholar
  24. Baranski R, Lukasiewicz A (2019) Genetic engineering of carrot. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 149–186CrossRefGoogle Scholar
  25. Barnes WC (1936) Effects of some environmental factors on growth and color of carrots. NY Agri Exper Stn Ithaca Memoirs 186:1–36Google Scholar
  26. Barthakur S, Babu V, Bansa KC (2001) Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant BiochemBiotechnol 10:31–37.  https://doi.org/10.1007/bf03263103CrossRefGoogle Scholar
  27. Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386.  https://doi.org/10.1016/j.pbi.2009.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bernstein L, Ayers A (1953) Salt tolerance of five varieties of carrots. J Amer Soc Hort Sci 61:360–366Google Scholar
  29. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev 31:491–543.  https://doi.org/10.1146/annurev.pp.31.060180.002423CrossRefGoogle Scholar
  30. Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446CrossRefGoogle Scholar
  31. Boiteux LS, Hyman JR, Bach IC, Fonseca MEN, Matthews WC, Roberts PA, Simon PW (2004) Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37–44CrossRefGoogle Scholar
  32. Bolton A, Nijabat A, Mahmood-ur-Rehman M, Naveed NH, Mannan ATMM, Ali A, Rahim MA, Simon PW (2019) Variation for heat tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:1470–1476.  https://doi.org/10.21273/HORTSCI14144-19CrossRefGoogle Scholar
  33. Bolton A, Simon P (2019) Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:38–44.  https://doi.org/10.21273/HORTSCI13333-18CrossRefGoogle Scholar
  34. Borner T, Linke B, Nothnagel T, Scheike R et al (1995) Inheritance of nuclear and cytoplasmic factors affectingmale sterility in Daucus carota. Adv Plant Breed 18:111–122Google Scholar
  35. Bostan H, Senalik D, Simon PW, Iorizzo M (2019) Carrot genetics, omics and breeding toolboxes. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 225–246CrossRefGoogle Scholar
  36. Bowen J, Lay-Yee M, Plummer KIM, Ferguson IAN (2002) The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. J Plant Physiol 159:599–606  https://doi.org/10.1078/0176-1617-0752CrossRefGoogle Scholar
  37. Boyer JS (1982) Plant productivity and environment. Science 218:443–448.  https://doi.org/10.1126/science.218.4571.443CrossRefPubMedGoogle Scholar
  38. Bradeen J, Simon P (1998) Conversion of an AFLPfragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor ApplGenet 97:960–967Google Scholar
  39. Bradeen JM, Simon PW (2007) Carrot. In: Kole C (ed) GenomeMapping and Molecular Breeding in Plants, vol 5. Vegetables. Springer, Heidelberg, pp 161–184Google Scholar
  40. Bradeen JM, Bach IC, Briard M, Le Clerc V, Grzebelus D, Senalik DA Simon PW (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Amer Soc Hort Sci 127:383–391CrossRefGoogle Scholar
  41. Bray E, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249Google Scholar
  42. Broussard MA, Mas F, Howlett B, Pattemore D, Tylianakis JM (2017) Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate. PLoS ONE 12:e0180215.  https://doi.org/10.1371/journal.pone.0180215CrossRefPubMedPubMedCentralGoogle Scholar
  43. Budahn H, Barański R, Grzebelus D, Kiełkowska et al(2014) Mapping genes governing flower architectureand pollen development in a double mutant populationof carrot. Front Plant Sci 5:504Google Scholar
  44. Camejo D, Jiménez A, Alarcón JJ, Torres W, María Gómez J, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants.Functional Plant Biol 33:177–187  https://doi.org/10.1071/fp05067
  45. Campos MD, Cardoso HG, Linke B, Costa JH, De Melo DF, Justo L, Frederico AMF, Arnholdt-Schmitt B (2009) Differential expression and co‐regulation of carrot AOX genes (Daucus carota). Physiol Plant 137 doi:10.1111/j.1399-3054.2009.01282.xPubMedCrossRefGoogle Scholar
  46. Campos MD, Nogales A, Cardoso HG, Kumar SR, Nobre T, Sathishkumar R, Arnholdt-Schmitt B (2016) Stress-induced accumulation of DcAOX1 and DcAOX2a transcripts coincides with critical time point for structural biomass prediction in carrot primary cultures (Daucus carota L.). Front Genet 7  https://doi.org/10.3389/fgene.2016.00001
  47. Carillo P, Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A, Venkateswaralu B (eds)Abiotic Stress in Plants—Mechanisms and Adaptations, 1st edn. INTECH, pp 21–38Google Scholar
  48. Castaneda-Alvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Muller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022PubMedCrossRefGoogle Scholar
  49. Cavagnaro P, Iorizzo M (2019) Carrot anthocyanin diversity, genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 261–278CrossRefGoogle Scholar
  50. Cavagnaro PF, Iorizzo M, Yildiz M, Senalik D, Parsons J, Ellison S, Simon PW (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118CrossRefGoogle Scholar
  51. Choudhary R, Saroha A, Swarnkar P (2012) Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in Syzygium cumini plant. J Food Sci Technol 49:649–652.  https://doi.org/10.1007/s13197-011-0464-3CrossRefPubMedGoogle Scholar
  52. Collier R, Finch S (2009) A review of research to address carrot fly (Psila rosae) control in the UK. EPPO Bull 39:121–127CrossRefGoogle Scholar
  53. Costa JH, Cardoso HG, Campos MD, Zavattieri A, Frederico AM, Fernandes de Melo D, Arnholdt-Schmitt B (2009) Daucus carota L.—An old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes. Plant Physiol Biochem 47:753–759.  https://doi.org/10.1016/j.plaphy.2009.03.011%5bCorrigendum to “Daucus carotaL.- an old model for cell reprogramming gains new importance through a novel expansion patternof alternative oxidase (AOX) genes. Plant Physiol Biochem 85:114.” doi: https://doi.org/10.1016/j.plaphy.2014.11.013]
  54. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in Durum wheat. Plant Physiol 137:807.  https://doi.org/10.1104/pp.104.057307CrossRefPubMedPubMedCentralGoogle Scholar
  55. DeRose-Wilson L, Gaut B (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 6 doi:10.1371/journal.pone.0022832PubMedPubMedCentralCrossRefGoogle Scholar
  56. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538.  https://doi.org/10.1016/0003-9861(89)90467-0CrossRefPubMedGoogle Scholar
  57. du Toit LJ, Le Clerc V, Briard M (2019) Genetics and genomics of carrot biotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 317–362CrossRefGoogle Scholar
  58. Duke JA (1992) Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. CRC Press, Boca Raton, FLGoogle Scholar
  59. Ellison S, Senalik D, Bostan H, Iorizzo M, Simon P (2017) Fine mapping, transcriptome analysis, andmarker development for Y2, the gene that conditionsbeta-carotene accumulation in carrot (Daucus carotaL.). G3: Genes Genom Genet7:2665–2675.  https://doi.org/10.1534/g3.117.043067PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ellison S, Luby C, Corak K, Coe K et al (2018) Association analysis reveals the importance of the Or gene in carrot (Daucus carota L.) carotenoid presence and domestication. Genetics 210:1–12CrossRefGoogle Scholar
  61. Eryılmaz F (2006) The relationships between salt stress and anthocyanin content in higher plants. Biotechnol & Biotechnol Equip 20:47–52.  https://doi.org/10.1080/13102818.2006.10817303CrossRefGoogle Scholar
  62. Essemine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572.  https://doi.org/10.3923/jbs.2010.565.572CrossRefGoogle Scholar
  63. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147.  https://doi.org/10.3389/fpls.2017.01147CrossRefPubMedPubMedCentralGoogle Scholar
  64. Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539.  https://doi.org/10.1104/pp.116.2.539CrossRefPubMedPubMedCentralGoogle Scholar
  65. Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232.  https://doi.org/10.1038/cr.2013.114CrossRefPubMedPubMedCentralGoogle Scholar
  66. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319.  https://doi.org/10.1093/jxb/erh003CrossRefPubMedGoogle Scholar
  67. Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Amer Soc Hort Sci 108:50–54Google Scholar
  68. Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59.  https://doi.org/10.1007/s11103-012-9893-2CrossRefPubMedGoogle Scholar
  69. Garciarrubio A, Legaria J, Covarrubias A (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203:182–187.  https://doi.org/10.1007/s004250050180CrossRefPubMedGoogle Scholar
  70. Gibberd MR, Turner NC, Storey R (2002) Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Ann Bot 90:715–724.  https://doi.org/10.1093/aob/mcf253CrossRefPubMedPubMedCentralGoogle Scholar
  71. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.  https://doi.org/10.1016/j.plaphy.2010.08.016CrossRefPubMedGoogle Scholar
  72. Gong M, Chen S, Song Y, Li Z (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379.  https://doi.org/10.1071/PP96118CrossRefGoogle Scholar
  73. Graßmann J (2005) Terpenoids as Plant Antioxidants. In: Litwack G (ed) Vitamins andHormones. Academic Press, New Yorkpp, pp 505–535Google Scholar
  74. Greer D, Weedon M (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. ‘Semillon’) leaves on vines grown in a hot climate. Plant, Cell Environ 35:1050–1064.  https://doi.org/10.1111/j.1365-3040.2011.02471.xCrossRefGoogle Scholar
  75. Gregorio G, Senadhira D, Mendoza R (1997) Screening Rice for Salinity Tolerance. IRRI, Manila, PhilippinesGoogle Scholar
  76. Groves RL, Clements JR, Bradford BZ (2019) Carrot diseases resulting from phytoplasmas and viruses. In: Geoffriau E, Simon PW (eds) Carrot and Other Cultivated Apiaceae, CABI, Oxford, UK, in pressGoogle Scholar
  77. Grzebelus D (2019) Genetics and genomics of carrot abiotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Switzerland, pp 363–372CrossRefGoogle Scholar
  78. Guajardo E, Correa J, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:767–781.  https://doi.org/10.1007/s00425-015-2438-6CrossRefPubMedGoogle Scholar
  79. Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5:157–161Google Scholar
  80. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14:9643–9684.  https://doi.org/10.3390/ijms14059643CrossRefGoogle Scholar
  81. Hooper PL, Hooper PL, Tytell M, Vígh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15:761–770.  https://doi.org/10.1007/s12192-010-0206-xCrossRefPubMedPubMedCentralGoogle Scholar
  82. Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237.  https://doi.org/10.1111/j.1744-7909.2008.00735.xCrossRefPubMedGoogle Scholar
  83. Huang Y, Li M-Y, Wang F, Xu Z-S, Huang W, Wang G-L, Ma J, Xiong A-S (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905.  https://doi.org/10.1007/s11033-014-3826-xCrossRefPubMedGoogle Scholar
  84. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393.  https://doi.org/10.3389/fpls.2018.00393CrossRefPubMedPubMedCentralGoogle Scholar
  85. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota L. subsp. sativus L.) (Apiaceae). Amer J Bot 100:930–938CrossRefGoogle Scholar
  86. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666.  https://doi.org/10.1038/ng.3565CrossRefPubMedGoogle Scholar
  87. Iorizzo M, Ellison S, Pottorff M, Cavagnaro P (2019a) Carrot molecular genetics and mapping. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer Nature, Cham, Switzerland, pp 101–118CrossRefGoogle Scholar
  88. Iorizzo M, Cavagnaro P, Bostan A, Zhao Y, Zhang J, Simon PW (2019b) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci 9:1927Google Scholar
  89. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00375
  90. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice Nucl Acids Res 41:e188–e188.  https://doi.org/10.1093/nar/gkt780PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jourdan M, Gagne S, Dubois-Laurent C et al (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an originalbroad unstructured population. PLoS ONE 10:e0116674PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jung YC, Lee HJ, Yum SS, Soh WY, Cho DY, Auh CK, Lee TK, Soh HC, Kim YS, Lee SC (2005) Drought-inducible—but ABA-independent—thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep 24:366–373PubMedCrossRefGoogle Scholar
  93. Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associatedwith carotenoid biosynthetic genes and interactepistatically in a domesticated x wild carrot cross.Theor Appl Genet 119:1155–1169PubMedCrossRefGoogle Scholar
  94. Kahouli B, Borgi Z, Hannachi C (2014) Effect of sodium chloride on the germination of the seeds of a collection of carrot accessions (Daucus carota L.) cultivated in the region of Sidi Bouzid. J Stress Physiol Biochem 10:28–36Google Scholar
  95. Kasiri MR, Hassandokht MR, Kashi A, Shahi-Gharahlar A (2013) Evaluation of genetic diversity in Iranian yellow carrot accessions (Daucus carota var. sativus), an exposed to extinction rooty vegetable, using morphological characters. Intl J Agri Crop Sci 6:151–156Google Scholar
  96. Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F (2017) The terpene synthase gene family of carrot (Daucus carota L.): Identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930.  https://doi.org/10.3389/fpls.2017.01930
  97. Kiełkowska A, Grzebelus E, Lis-Krzyścin A, Maćkowska K (2019) In vitro selection in protoplast cultures of the carrot (Daucus carota L.) and evaluation of the response of regenerants to soil salinity. Plant Cell Tiss Organ Cult 137:379–395CrossRefGoogle Scholar
  98. Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586.  https://doi.org/10.1007/s00299-018-2252-2CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kovács G, Sorvari S, Scott P, Toldi O (2006) Pyrophosphate: fructose 6-phosphate 1-phosphotransferase operates in net gluconeogenic direction in taproots of cold and drought stressed carrot plants. Acta Biol 50:25–30.  https://doi.org/10.1556/AAgr.55.2007.1.8CrossRefGoogle Scholar
  100. Kovinich N, Kayanja G, Chanoca A, Otegui M, Grotewold E (2015) Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal Behav 10. https://doi.org/10.1080/15592324.2015.1027850
  101. Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8. https://doi.org/10.4161/psb.25761CrossRefGoogle Scholar
  102. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854.  https://doi.org/10.1104/pp.104.045187CrossRefPubMedPubMedCentralGoogle Scholar
  103. Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Funct Roles Second Metab Plant-Environ Interact 119:4–17.  https://doi.org/10.1016/j.envexpbot.2015.05.012CrossRefGoogle Scholar
  104. Landjeva S, Neumann K, Lohwasser U, Börner A (2008) Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant 52:259–266.  https://doi.org/10.1007/s10535-008-0056-xCrossRefGoogle Scholar
  105. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682.  https://doi.org/10.1104/pp.010320CrossRefPubMedPubMedCentralGoogle Scholar
  106. Laufer B (1919) Sino-Iranica. Chicago, Field Museum of Natural Hist. Pub. 201; Anthropot Ser 15:451–454Google Scholar
  107. Le Clerc V, Briard M (2019) Carrot disease management. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae, CABI, Oxford, UK, in pressGoogle Scholar
  108. Le Clerc V, Pawelec A, Birolleau-Touchard C, Suel A, Briard M (2009) Genetic architecture of factors underlying partial resistance to Alternaria leaf blight in carrot. Theor Appl Genet 118:1251–1259PubMedCrossRefGoogle Scholar
  109. Le Clerc V, Marques S, Suel A, Huet S, Hamama L, Voisine L, Auperpin E, Jourdan M, Barrot L, Prieur R (2015) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theor Appl Genet 128:2177–2187PubMedCrossRefGoogle Scholar
  110. Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691.  https://doi.org/10.1038/nbt.2654CrossRefPubMedPubMedCentralGoogle Scholar
  111. Linke B, Alessandro MS, Galmarini C, Nothnagel T (2019) Carrot floral development and reproductive biology. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 27–58CrossRefGoogle Scholar
  112. Maas E, Hoffman G (1977) Crop salt tolerance—current assessment. J Irrig Drain Div 103:115–134Google Scholar
  113. Mackevic VI (1929) The carrot of Afghanistan. Bul Appl Bot Genet Plant Breeding 20:517–562Google Scholar
  114. Macko-Podgórni A, Machaj G, Stelmach K, Senalik D et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Front Plant Sci 8:12Google Scholar
  115. Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen H, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681.  https://doi.org/10.1023/A:1014826730024CrossRefPubMedGoogle Scholar
  116. Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99PubMedCrossRefGoogle Scholar
  117. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011.  https://doi.org/10.1093/mp/sst121CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462.  https://doi.org/10.1146/annurev-arplant-042809-112116CrossRefPubMedGoogle Scholar
  119. Møller I, Jensen P, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481.  https://doi.org/10.1146/annurev.arplant.58.032806.103946CrossRefPubMedGoogle Scholar
  120. Morales D, Rodríguez P, Dell’Amico J, Nicolás E, Torrecillas A, Sánchez-Blanco M (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203.  https://doi.org/10.1023/B:BIOP.0000022252.70836.fcCrossRefGoogle Scholar
  121. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663.  https://doi.org/10.1111/j.1469-8137.2005.01487.xCrossRefPubMedGoogle Scholar
  122. Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569.  https://doi.org/10.1071/PP9950561CrossRefGoogle Scholar
  123. Munns R, Rawson H (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26:459–464.  https://doi.org/10.1071/PP99049CrossRefGoogle Scholar
  124. Munns R, James R (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218.  https://doi.org/10.1023/A:1024553303144CrossRefGoogle Scholar
  125. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911CrossRefPubMedGoogle Scholar
  126. Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J Plant Physiol 224–225:156–162.  https://doi.org/10.1016/j.jplph.2018.04.001CrossRefPubMedGoogle Scholar
  127. Nakajima Y, Yamamoto T, Muranaka T, Oeda K (1999) Genetic variation of petaloid male-sterile cytoplasm ofcarrots revealed by sequence-tagged sites (STSs). Theor Appl Genet 99:837–843CrossRefGoogle Scholar
  128. Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. HortScience 43:1538–1543CrossRefGoogle Scholar
  129. Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829.  https://doi.org/10.1105/tpc.105.031914PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nissinen AI, Lemmetty A, Pihlava J-M, Jauhiainen L, Munyaneza JE, Vanhala P (2012) Effects of carrot psyllid (Trioza apicalis) feeding on carrot yield and content of sugars and phenolic compounds. Ann Appl Biol 161:68–80CrossRefGoogle Scholar
  131. Noble C, Rogers M (1992) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107.  https://doi.org/10.1007/BF00012001CrossRefGoogle Scholar
  132. Nogales A, Nobre T, Cardoso HG, Muñoz-Sanhueza L, Valadas V, Campos MD, Arnholdt-Schmitt B (2016) Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in a highly variable intron. Plant Gene 5:49–55.  https://doi.org/10.1016/j.plgene.2015.11.001CrossRefGoogle Scholar
  133. Noori SAS, Sokhansanj A (2008) Wheat plants containing an osmotin gene show enhanced ability to produce roots at high NaCl concentration. Russ J Plant Physiol 55:256–258.  https://doi.org/10.1134/s1021443708020143CrossRefGoogle Scholar
  134. Osakabe Y, Osakabe K (2017) Genome editing to improve abiotic stress responses in plants. Prog in Mol Biol and Transl Sci, 99–109 doi:10.1016/bs.pmbts.2017.03.007Google Scholar
  135. Pachauri R, Reisinger A (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  136. Park H, Ko E, Jang E, Park S, Lee J, Ahn Y-J (2013) Expression of DcHsp17.7, a small heat shock protein gene in carrot (Daucus carota L.) Hort Environ Biotechnol 54:121–127.  https://doi.org/10.1016/j.nbt.2011.04.002PubMedCrossRefGoogle Scholar
  137. Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3Biotechnol 7:239.  https://doi.org/10.1007/s13205-017-0870-y
  138. Palta J, Simon G (2004) Developing and successfully implementing a strategy for breeding frost-hardy carrots. HortScience 39:880CrossRefGoogle Scholar
  139. Parsons J, Matthews W, Iorizzo M et al (2015) Meloidogyne incognita nematode resistance QTL in carrot. Mol Breed 35:114CrossRefGoogle Scholar
  140. Peterson CE, Simon PW (1986) Carrot breeding. In: Vegetable Breeding (ed) Bassett MJ. Crops.AVI, Westport, CN, pp 321–356Google Scholar
  141. Radić V, Beatović D, Mrđa J (2007) Salt tolerance of corn genotypes (Zea mays L.) during germination and later growth. J Agri Sci 52:115–120.  https://doi.org/10.2298/JAS0702115RCrossRefGoogle Scholar
  142. Richards RA, Dennett CW, Qualset CO, Epstein E, Norlyn JD, Winslow MD (1987) Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res 15:277–287.  https://doi.org/10.1016/0378-4290(87)90017-7CrossRefGoogle Scholar
  143. Rockström J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit Rev Plant Sci 19:319–346.  https://doi.org/10.1080/07352680091139259CrossRefGoogle Scholar
  144. Rodriguez R, Redman R (2005) Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA 102:3175.  https://doi.org/10.1073/pnas.0500367102CrossRefPubMedGoogle Scholar
  145. Ruhlman T, Lee S-B, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms. BMC Genom 7:222CrossRefGoogle Scholar
  146. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ 25:163–171.  https://doi.org/10.1046/j.0016-8025.2001.00790.xCrossRefGoogle Scholar
  147. Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genom 268:122–129CrossRefGoogle Scholar
  148. Savicka M, Shkute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:  https://doi.org/10.2478/v10055-010-0004-x
  149. Schmidhalter U, Oertli J (1991) Transpiration/biomass ratio for carrots as affected by salinity, nutrient supply and soil aeration. Plant Soil 135:125–132CrossRefGoogle Scholar
  150. Schöffl F, Prändl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Landes Co, Austin, TX, pp 81–98Google Scholar
  151. Schulz B, Westphal L, Wricke G (1994) Linkage groupsof isozymes, RFLP and RAPD markers in carrot(Daucus carota L. sativus). Euphytica 74:67–76CrossRefGoogle Scholar
  152. Shahid M, Balal R, Pervez M, Abbas T, Ashfaq M, Ghazanfar U, Afzal M, Rashid A, Garcia-Sanchez F, Mattson N (2012) Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Aust J Crop Sci 6:828–838Google Scholar
  153. Shannon M (1985) Principles and strategies in breeding for higher salt tolerance. Plant Soil 89:227–241.  https://doi.org/10.1007/BF02182244CrossRefGoogle Scholar
  154. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216.  https://doi.org/10.1111/pbi.12603CrossRefPubMedGoogle Scholar
  155. Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both arabidopsis and maize. Plant Physiol 169:266–282.  https://doi.org/10.1104/pp.15.00780CrossRefPubMedPubMedCentralGoogle Scholar
  156. Shinozaki K, Yamaguchi-Shinozaki K (2006) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227.  https://doi.org/10.1093/jxb/erl164CrossRefPubMedGoogle Scholar
  157. Shiota H, Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homolog of ABI3. J Plant Physiol 156:510–515.  https://doi.org/10.1016/s0176-1617(00)80166-2CrossRefGoogle Scholar
  158. Shomer-Ilan A, Jones G, Paleg L (1991) In vitro thermal and salt stability of pyruvate kinase are increased by proline analogues and trigonelline. Funct Plant Biol 18:279–286.  https://doi.org/10.1071/PP9910279CrossRefGoogle Scholar
  159. Shu S, Gao P, Li L, Yuan Y, Sun J, Guo S (2016) Abscisic acid-induced H2O2 accumulation enhances antioxidant capacity in pumpkin-grafted cucumber leaves under Ca(NO3)2 stress. Front Plant Sci 7:1489.  https://doi.org/10.3389/fpls.2016.01489CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62:1315S–1321S.  https://doi.org/10.1093/ajcn/62.6.1315SCrossRefPubMedGoogle Scholar
  161. Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190Google Scholar
  162. Simon PW (2019) Economic and academic importance. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 1–8CrossRefGoogle Scholar
  163. Simon PW, Goldman IL (2007) Carrot. In: Singh RJ (ed) Genetic Resources, chromosome Engineering, and Crop Improvement Series, vol 3. CRC Press. Boca Raton, FL, pp 497–517Google Scholar
  164. Simon PW, Grzebelus D (2019) Carrot genetics and breeding. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae, CABI, Oxford, UK, in pressGoogle Scholar
  165. Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742CrossRefGoogle Scholar
  166. Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of Plant Breeding: Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357Google Scholar
  167. Simon PW, Geoffriau E, Ellison S, Iorizzo M (2019) Carrot carotenoid genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 247–260CrossRefGoogle Scholar
  168. Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot 69:4113–4126.  https://doi.org/10.1093/jxb/ery207CrossRefPubMedPubMedCentralGoogle Scholar
  169. Singh NK, Handa AK, Hasegawa PM, Bressan RA (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79:126–137.  https://doi.org/10.1104/pp.79.1.126CrossRefPubMedPubMedCentralGoogle Scholar
  170. Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413.  https://doi.org/10.1104/pp.115.4.1413CrossRefPubMedPubMedCentralGoogle Scholar
  171. Sorensen JN, Jorgensen U, Kuhn BF (1997) Drought effects on the marketable and nutritional quality of carrots. J Sci Food Agri 74:379–391CrossRefGoogle Scholar
  172. Spooner DM (2019) Daucus: Taxonomy, phylogeny, distribution. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Switzerland, pp 9–26CrossRefGoogle Scholar
  173. Sreenivasulu N, Sopory S, Kishor P (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13.  https://doi.org/10.1016/j.gene.2006.10.009CrossRefPubMedGoogle Scholar
  174. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Fat Soluble Vitam Old Mol Nov Prop 24:345–351.  https://doi.org/10.1016/S0098-2997(03)00030-XCrossRefGoogle Scholar
  175. Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J (2010) Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 92:184–211.  https://doi.org/10.1016/j.pneurobio.2010.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  176. Subramanyam K, Sailaja KV, Subramanyam K, Muralidhara Rao D, Lakshmidevi K (2010) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Org Cult105(2), 181–192.  https://doi.org/10.1007/s11240-010-9850-1CrossRefGoogle Scholar
  177. Tan W, Meng Q wei, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071. https://doi.org/10.1016/j.jplph.2011.06.009PubMedCrossRefGoogle Scholar
  178. Tester M, Davenport R (2003) Na+tolerance and Na+transport in higher plants. Ann Bot 91:503–527.  https://doi.org/10.1093/aob/mcg058CrossRefPubMedPubMedCentralGoogle Scholar
  179. Turner S, Ellison S, Senalik DA, Simon PW et al (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Front Plant Sci 9:1703Google Scholar
  180. Turner SD, Maurizio PL, Valdar W, Yandell BS, Simon PW (2017) Dissecting the genetic architecture of shoot growth in carrot (Daucus carota L.) using a diallel mating design. Genes Genom Genet 8:411–426Google Scholar
  181. Vieira JV, Della Vecchia P, Ikuta H (1983) Cenoura ‘Brasilia’. Hort Bras 1:42Google Scholar
  182. Vivek BS, Simon PW (1999) Linkage relationshipsamong molecular markers and storage root traits ofcarrot (Daucus carota L. ssp. sativus). Theor ApplGenet 99:58–64Google Scholar
  183. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223.  https://doi.org/10.1016/j.envexpbot.2007.05.011CrossRefGoogle Scholar
  184. Wang H, Ou C-G, Zhuang F-Y, Ma Z-G (2014) The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Mol Breed 34:2065–2079.  https://doi.org/10.1007/s11032-014-0163-7CrossRefPubMedPubMedCentralGoogle Scholar
  185. Westphal L, Wricke G (1991) Genetic and linkage analysis of isozyme loci in Daucus carota L. Euphytica 56:259–267CrossRefGoogle Scholar
  186. Wohlfeiler J, Alessandro MS, Galmarini CR (2019) Multiallelic digenic control of vernalization requirement in carrot (Daucus carota L.). Euphytica 215:1–10CrossRefGoogle Scholar
  187. Xu Z-S, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database (Oxford) 2014 doi:10.1093/database/bau096PubMedPubMedCentralCrossRefGoogle Scholar
  188. Xu Z-S, Feng K, Xiong A-S (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61:191–199PubMedCrossRefGoogle Scholar
  189. Yau Y, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162PubMedCrossRefGoogle Scholar
  190. Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots with codominant, PCR-based markers. Mol Breed 16:1–10CrossRefGoogle Scholar
  191. Yeo A, Flowers T (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:161–173.  https://doi.org/10.1071/PP9860161CrossRefGoogle Scholar
  192. Yildiz M, Willis DK, Cavagnaro PF, Iorizzo M, Abak K, Simon PW (2013) Expression and mapping of anthocyaninbiosynthesis genes in carrot. Theor Appl Genet 126:1689–1702PubMedCrossRefGoogle Scholar
  193. Yoshida Y, Marubodee R, Ogiso-Tanaka E, Iseki K, Isemura T, Takahashi Y, Muto C, Naito K, Kaga A, Okuno K, Ehara H, Tomooka N (2016) Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet Resour Crop Evol 63:627–637.  https://doi.org/10.1007/s10722-015-0272-0CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  • Adam Bolton
    • 1
  • Magdalena Klimek-Chodacka
    • 2
  • Emily Martin-Millar
    • 3
  • Dariusz Grzebelus
    • 2
  • Philipp W. Simon
    • 3
    Email author
  1. 1.Plant Breeding and Plant Genetics Program, Department of HorticultureUniversity of WisconsinMadisonUSA
  2. 2.Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in KrakowKrakowPoland
  3. 3.Vegetable Crops Research Unit, Department of Horticulture, USDA – Agricultural Research ServiceUniversity of WisconsinMadisonUSA

Personalised recommendations