Climate-Smart Potato: An Integrated Breeding, Genomics, and Phenomics Approach

  • Jagesh Kumar TiwariEmail author
  • Clarissa Challam
  • Swarup K. Chakrabarti
  • Sergio E. Feingold


Potato is an important source of food globally. Potatoes are among the most widely grown crop plants in the world, giving good yield under various soil and weather conditions. Yield losses of potato under current climate change keep increasing, despite the progressive increase in yield through breeding and management practices since the 1960s. Conventional breeding facilitated the development of high-quality potato with enhanced tolerance to severe environmental fluctuations such as drought, flooding, heat, and salinity. However, conventional approaches need to be complemented with advanced techniques in order to meet the increasing demands of the growing world population. The advances in marker-assisted and genomics-assisted breeding, sequencing technologies, and phenomics tools have enabled the potato improvement at a faster pace. The genomic resources have enabled the development of molecular markers associated with many important quantitative trait loci. It has also provided a clear picture of genomic variations in potato germplasm, and identified key genes for genetic engineering including genome editing. This knowledge is being utilized to facilitate the development of climate-smart potato. In this chapter, we discuss and summarize the advances in potato improvement through conventional and genomics-assisted breeding, genetic engineering, and phenomics approaches. This information could facilitate the incorporation of climate-smart traits (biotic and abiotic stresses) in modern breeding for more stable potato production with the changing climate.


Breeding Climate change Genomics Phenomics Potato 



The Authors thank the Competent Authority, Indian Council of Agricultural Research-Central Potato Research Institute, Shimla for necessary support under the Biotechnology Program and CABin Scheme (ICAR-IASRI, New Delhi).


  1. Abdullah Z, Ahmad R (1982) Salt tolerance of Solanum tuberosum L growing on saline soils amended with gypsum. Z Fuer Acker-Und PflanzBau 151:409–416Google Scholar
  2. Abelenda JA, Navarro C, Prat S (2014) Flowering and tuberization: a tale of two nightshades. Trends Plant Sci 19:115–122PubMedCrossRefGoogle Scholar
  3. Anonymous (2015) CPRI Vision 2015. ICAR-CPRI, Shimla, Himachal Pradesh, India, p 50Google Scholar
  4. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baldwin SJ, Dodds KG, Auvray B, Genet RA, Macknight RC, Jacobs JME (2011) Association mapping of cold-induced sweetening in potato using historical phenotypic data. Ann Appl Biol 158:248–256CrossRefGoogle Scholar
  6. Bonierbale MW, Plaisted RL, Tanksley SD (1988) Construction of a genetic map of potato based on molecular markers from tomato. Amer Potato J 65:471–472Google Scholar
  7. Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp tuberosum). Theor Appl Genet 116:193–211PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brigneti G, Garcia-Mas J, Baulcombe DC (1997) Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theor Appl Genet 94:198–203CrossRefGoogle Scholar
  9. Bukasov SM (1933) The potatoes of South America and their breeding possibilities. (According to data gathered by expeditions of the institute of plant industry to central and South America). Suppl 58 Bull Appl Bot Leningrad (1–192)Google Scholar
  10. Burgutin AB, Butenko RG, Kaurov BA, Iddagoda N (1996) In vitro selection of potato for tolerance to sodium chloride. Russ J Plant Physio 1(43):524–531Google Scholar
  11. Castillo JA, Plata G (2016) The expansion of brown rot disease throughout Bolivia: possible role of climate change. Can J Microbiol 62:442–448PubMedCrossRefPubMedCentralGoogle Scholar
  12. Celebi-Toprak F, Behnam B, Serrano G, Kasuga M, Yamaguchi-Shinozaki K, Naka H, Watanabe JA, Yamanaka S, Watanabe KN (2005) Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv Desiree appears to be induced by the DREBIA gene and rd29A promoter of Arabidopsis thaliana. Breed Sci 55:311–319CrossRefGoogle Scholar
  13. Chakrabarti SK, Conghua X, Tiwari JK (2017) The Potato Genome. Springer, Switzerland, p 326CrossRefGoogle Scholar
  14. Chakrabarti SK, Mandaokar AD, Shukla A, Pattanayak D, Naik PS et al (2000) Bacillus thuringiensis cry1Ab gene confers resistance to potato against Helicoverpa armigera (Hubner). Potato Res 43:143–152CrossRefGoogle Scholar
  15. Chakrabarti SK, Singh BP, Thakur G, Tiwari JK, Kaushik SK et al (2014) QTL mapping underlying resistance to late blight in a diploid potato population of Solanum spegazzinii × S. chacoense. Potato Res 57:1–11CrossRefGoogle Scholar
  16. Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K et al (2010) Next-generation protein-rich potato expressing the seed protein gene Am A1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 107:17533–17538PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chandel P, Tiwari JK, Ali N, Devi S, Sharma S et al (2015) Interspecific potato somatic hybrids between Solanum tuberosum and S. cardiophyllum, potential sources of late blight resistance breeding. Plant Cell Tiss Organ Cult 123:579–589CrossRefGoogle Scholar
  18. Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10:913–924PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen L, Guo X, Xie C, He L, Cai X et al (2013) Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theor Appl Genet 126:1861–1872PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295CrossRefGoogle Scholar
  21. Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55PubMedPubMedCentralCrossRefGoogle Scholar
  22. Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8(03):314–325PubMedCrossRefGoogle Scholar
  23. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176PubMedCrossRefGoogle Scholar
  24. Cockerham G (1943) Potato breeding for virus resistance. Ann Appl Biol 30:105–108CrossRefGoogle Scholar
  25. Colman SL, Massa GA, Carboni MF, Feingold SE (2017) Cold sweetening diversity in Andean potato germplasm from Argentina. J Sci Food Agri 97(14):4744–4749CrossRefGoogle Scholar
  26. D’hoop BB, Paulo MJ, Mank RA, van Eck HJ, van Eeuwijk FA (2008) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161: 47–60CrossRefGoogle Scholar
  27. Danan S, Chauvin JE, Caromel B, Moal JD, Pellé R, Lefebvre V (2009) Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theor Appl Genet 119:705–719PubMedCrossRefGoogle Scholar
  28. De Koeyer D, Douglass K, Murphy A, Whitney S, Nolan L et al (2010) Application of high-resolution DNA melting for genotyping and variant scanning of diploid and autotetraploid potato. Mol Breed 25:67–90CrossRefGoogle Scholar
  29. Ding Y, Li H, Chen LL, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:1–12Google Scholar
  30. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2:e350PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dua VK, Singh BP, Govindakrishnan PM, Kumar S, Lal SS (2013) Impact of climate change on potato productivity in Punjab–a simulation study. Curr Sci 105:787–794Google Scholar
  32. Dutt S, Manjul AS, Raigond P, Singh B, Siddappa S, Bhardwaj V, Kanwar PG, Patl VU, Kardile HB (2017) Key players associated with tuberization in potato: potential candidates for genetic engineering. Crit Review Biotechnol 37:942–957CrossRefGoogle Scholar
  33. Elkhatib HA, Elkhatib EA, Allah AMK, E-Sharkawy AM (2004) Yield response of salt-stressed potato to potassium fertilization: a preliminary mathematical model. J Plant Nutrit 27:111–122CrossRefGoogle Scholar
  34. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379PubMedPubMedCentralCrossRefGoogle Scholar
  35. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution 1960 to 2000. Science 300:758–762PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ewing EE, Simko I, Smart CD, Bonierbale MW, Mizubuti ESG et al (2000) Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Mol Breed 6:25–36CrossRefGoogle Scholar
  37. Feingold S, Bonnecarrère V, Nepomuceno A, Hinrichsen P, Cardozo Tellez L, et al (2018) Edición génica: una oportunidad para la región. Rev Investigac Agropecuar 44(424):427. Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP et al (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7: e36347Google Scholar
  38. Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J (2005) Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet 111:456–466PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann Appl Biol 145:185–192CrossRefGoogle Scholar
  40. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45PubMedPubMedCentralCrossRefGoogle Scholar
  41. Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61:83–111CrossRefGoogle Scholar
  42. Fock I, Collonnier C, Luisetti J, Purwito A, Souvannavong V et al (2001) Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol Biochem 39:899–908CrossRefGoogle Scholar
  43. Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V et al (2000) Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci 160:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  44. Foster SJ, Park T-H, Pel MA, Brigneti G, Śliwka J et al (2009) Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii confers resistance to potato late blight. Mol Plant Microbe Interact 22:589–600PubMedCrossRefPubMedCentralGoogle Scholar
  45. Freyre R, Warnke S, Sosinski B, Douches DS (1994) Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanum spp). Theor Appl Genet 89:474–480PubMedCrossRefPubMedCentralGoogle Scholar
  46. Galindo-Castañeda T, Brown KM, Lynch JP (2018) Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant, Cell Environ 41:1579–1592CrossRefGoogle Scholar
  47. Gebhardt C, Bellin D, Henselewski H, Lehmann W, Schwarzfischer J, Valkonen JP (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B et al (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ghosh SC, Asanuma K, Kusutani A, Toyota M (2001) Effect of salt stress on some chemical components and yield of potato. Soil Sci Plant Nutr 47:467–475CrossRefGoogle Scholar
  50. Hackett CA, Luo ZW (2003) TetraploidMap: construction of a linkage map in autotetraploid species. J Hered 94:358–359PubMedCrossRefPubMedCentralGoogle Scholar
  51. Halterman D, Guenthner J, Collinge S, Butler N, Douches D (2016) Biotech potatoes in the 21st century: 20 years since the first biotech potato. Amer J Potato Res 93:1–20CrossRefGoogle Scholar
  52. Hamalainen JH, Watanabe KN, Valkonen JPT, Arihara A, Plaisted RL et al (1997) Mapping and marker assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94:192–197CrossRefGoogle Scholar
  53. Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN et al (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genom 12:302CrossRefGoogle Scholar
  54. Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell Environ 37:439–450CrossRefGoogle Scholar
  55. Hane DC, Hamm PB (1999) Effects of seedborne potato virus Y infection in two potato cultivars expressing mild disease symptoms. Plant Dis 83:43–45PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hawkes JG (1994) Origins of cultivated potatoes and species relationships. In: Bradshaw JE, Mackay GR (eds) Potato Genetics. CAB International, Wallingford, pp 3–42Google Scholar
  57. Hendriks T, Vreugdenhil D, Stiekema WJ (1991) Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol Biol 17:385PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hofvander P, Ischebeck T, Turesson H, Kushwaha SK, Feussner I et al (2016) Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnol J 14:1883–1898PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hosaka K, Hosaka Y, Mori M, Maida T, Matsunaga H (2001) Detection of a simplex RAPD marker linked to resistance to potato virus Y in a tetraploid potato. Amer J Potato Res 78:191–196CrossRefGoogle Scholar
  60. Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Phyisol 130:618–626CrossRefGoogle Scholar
  61. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression-c-repeat binding factor/DRE binding Factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48:109–111PubMedCrossRefPubMedCentralGoogle Scholar
  63. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M et al (eds) Cambridge. Cambridge University Press, UK, p 996Google Scholar
  64. Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S et al (2011) GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23:4507–4525PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jaccoud D, Peng KM, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jacobs JME, van Eck HJ, Arens P, Verkerk-Bakker B, Te Lintel Hekkert B et al (1995) A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theor Appl Genet 91:289–300PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jacobs JME, van Eck HJ, Horsman K, Arens PFP, Verkerk-Bakker B et al (1996) Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei. Mol Breed 2:51–60CrossRefGoogle Scholar
  68. Jacobs MM, Vosman B, Vleeshouwers VG, Visser RG, Henken B, van den Berg RG (2010) A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theor Appl Genet 120:785–796PubMedCrossRefPubMedCentralGoogle Scholar
  69. James C (2010) Global Status of Commercialized Biotech/GM Crops: 2010. In: ISAAA Brief No 42. Ithaca, NYGoogle Scholar
  70. Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the Colorado potato beetle in wild relatives of cultivated potato. J Econ Entomol 102:422–431PubMedCrossRefPubMedCentralGoogle Scholar
  71. Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M et al (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 14:50PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129:1639–1655PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kasai K, Morikawa Y, Sorri VA, Valkonen JPT, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome 43:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  76. Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584PubMedPubMedCentralGoogle Scholar
  77. Kim-Lee H, Moon JS, Hong YJ, Kim MS, Cho HM (2005) Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Amer J Potato Res 82:129–137CrossRefGoogle Scholar
  78. Kloosterman B, Abelenda JA, Gomez Mdel M, Oortwijn M, de Boer JM et al (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246–250PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kloosterman B, Vorst O, Hall RD, Visser RG, Bachem CW (2005) Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J 3:505–519PubMedCrossRefPubMedCentralGoogle Scholar
  80. Krauss A, Marschner H (1984) Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Res 27:297–303CrossRefGoogle Scholar
  81. Krunic SL, Skryhan K, Mikkelsen L, Ruzanski C, Shaik SS et al (2018) Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. Starch 70:1600310CrossRefGoogle Scholar
  82. Kuhl JC, Hanneman RE, Havey MJ (2001) Characterization and mapping of Rpi1, a late blight resistance locus from diploid (1EBN) Mexican Solanum pinnatisectum. Mol Genet Genom 265:977–985CrossRefGoogle Scholar
  83. Kumar P, Jander G (2017) Concurrent overexpression of Arabidopsis thaliana cystathionine gamma-synthase and silencing of endogenous methionine gamma-lyase enhance tuber methionine content in Solanum tuberosum. J Agri Food Chem 65:2737–2742CrossRefGoogle Scholar
  84. Lammerts van Bueren E, Verhoog H, Tiemens-Hulscher M, Struik P, Haring M (2007) Organic agriculture requires process rather than product evaluation of novel breeding techniques. NJAS Wageningen J Life Sci 54:401–412CrossRefGoogle Scholar
  85. Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lehsten V, Wiik L, Hannukkala A, Andreasson E, Chen D, Ou T, et al (2017) Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS One 12(5): e0177580. Leonards-Schippers C, Gieffers W, Schafer-Pregl R, Ritter E, Knapp SJ et al (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77PubMedPubMedCentralCrossRefGoogle Scholar
  87. Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity-a review. Amer J Potato Res 84:487–506CrossRefGoogle Scholar
  88. Li L, Tacke E, Hofferbert HR, Lubeck J, Strahwald J et al (2013) Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor Appl Genet 126:1039–1052PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li L, Yang Y, Xu Q, Owsiany K, Welsch R et al (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352PubMedCrossRefGoogle Scholar
  90. Li Y, Tang W, Chen J, Jia R, Ma L et al (2016) Development of marker-free transgenic potato tubers enriched in caffeoylquinic acids and flavonols. J Agri Food Chem 64:2932–2940CrossRefGoogle Scholar
  91. Lindhout P, Meijer D, Schotte T, Hutten RC, Visser RG, Van Eck J (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312CrossRefGoogle Scholar
  92. Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen SE (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168(3):831–836CrossRefGoogle Scholar
  93. Liu Z, Halterman D (2006) Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Physiol Mol Plant Pathol 69:230–239CrossRefGoogle Scholar
  94. Lokossou AA, Park TH, van Arkel G, Arens M, Ruyter-Spira C et al (2009) Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant Microbe Interact 22:630–641PubMedCrossRefGoogle Scholar
  95. Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS ONE 7:e34775PubMedPubMedCentralCrossRefGoogle Scholar
  96. Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D (2001) Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157:1369–1385PubMedPubMedCentralGoogle Scholar
  97. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  98. Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65:26–40PubMedPubMedCentralCrossRefGoogle Scholar
  99. Machida-Hirano R, Niino T (2017) Potato genetic resources. In: Chakrabarti SK, Xie C, Tiwari JK (eds) The Potato Genome. Springer, Switzerland, pp 11–30CrossRefGoogle Scholar
  100. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63PubMedCrossRefGoogle Scholar
  101. Martinez CA, Maestri M, Lani EG (1996) In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp) differing in frost resistance. Plant Sci 116:177–184CrossRefGoogle Scholar
  102. Martinez-Garcia J, Virgos-Soler A, Prat S (2002) Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA 99:15211–15216PubMedCrossRefGoogle Scholar
  103. Massa AN, Childs KL, Buell CR (2013) Abiotic and biotic stress responses in group Phureja DM1-3 516 R44 as measured through whole transcriptome sequencing. Plant Genome 6:15CrossRefGoogle Scholar
  104. Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR (2011) The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. PLoS ONE 6:e26801PubMedPubMedCentralCrossRefGoogle Scholar
  105. McCord P, Zhang LH, Brown C (2012) The incidence and effect on total tuber carotenoids of a recessive zeaxanthin epoxidase allele (Zep1) in yellow-fleshed potatoes. Amer J Potato Res 89:262–268CrossRefGoogle Scholar
  106. Milczarek D, Flis B, Przetakiewicz A (2011) Suitability of molecular markers for selection of potatoes resistant to Globodera spp. Amer J Potato Res 88:245–255CrossRefGoogle Scholar
  107. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  108. Moloney C, Griffin D, Jones PW, Bryan GJ, McLean K et al (2010) Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp andigena CPC 2802. Theor Appl Genet 120:679–689PubMedCrossRefGoogle Scholar
  109. Monneveux P, Ramírez DA, Khan MA, Raymundo RM, Loayza H, Quiroz R (2014) Drought and heat tolerance evaluation in potato (Solanum tuberosum L.). Potato Res 57:225–247CrossRefGoogle Scholar
  110. Monte MN, Rey Burusco MF, Carboni MF, Castellote MA, Sucar S, Norero NS, Colman SL, Massa GA, Colavita ML, Feingold SE (2018) Genetic diversity in Argentine Andean Potatoes by means of functional markers. Amer J Potato Res. 95(3):286–300CrossRefGoogle Scholar
  111. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96CrossRefGoogle Scholar
  112. Mustonen L, Wallius E, Hurme T (2008) Nitrogen fertilization and yield formation of potato during a short growing period. Agri Food Sci 9:173–183CrossRefGoogle Scholar
  113. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedPubMedCentralCrossRefGoogle Scholar
  114. Naimov S, Dukiandjiev S, de Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a epidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  115. Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by Flowering Locus T. Nature 478:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  116. Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C (2004) A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol Biol 55(5):679–686PubMedCrossRefPubMedCentralGoogle Scholar
  117. Park TH, Gros J, Sikkema A, Vleeshouwers VG, Muskens M et al (2005) The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant Microbe Interact 18:722–729PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pehu E, Gibson RW, Jones MGK, Karp A (1990) Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci 69:95–101CrossRefGoogle Scholar
  119. Pel MA, Foster SJ, Park T-H, Rietman H, Arkel G et al (2009) Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant Microbe Interact 22:601–615PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pelletier Y, Horgan FG, Pompon J (2013) Potato resistance against insect herbivores: Resources and opportunities. In: Giordanengo P, Vincent C, Alyokhin A (eds) Insect Pests of Potato, Global Perspectives on Biology and Management. Academic Press, Oxford, UK, pp 439–462CrossRefGoogle Scholar
  121. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  122. Prasad PVD, Potluri SDP (1996) Influence of proline and hydroxyproline on salt-stressed axillary bud cultures of two varieties of potato (Solanum tuberosum). Vitro Cell Devel Biol Plant 32:47–50CrossRefGoogle Scholar
  123. Pruvot G, Massimino J, Peltier G, Rey P (1996) Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought-induced proteins in Solanum tuberosum. Physiol Plant 97:123–131CrossRefGoogle Scholar
  124. Queitsch C, Hong S, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rahnama H, Ebrahimzadeh H (2005) The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol Plant 49:93–97CrossRefGoogle Scholar
  126. Rauscher GM, Smart CD, Simko I, Bonierbale M, Mayton H et al (2006) Characterization and mapping of Rpi-ber, a novel potato late blight resistance gene from Solanum berthaultii. Theor Appl Genet 112:674–687PubMedCrossRefPubMedCentralGoogle Scholar
  127. Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G et al (2018) Climate change impact on global potato production. Eur J Agron 100:87–98CrossRefGoogle Scholar
  128. Reynolds MP, Ewing EE (1989) Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Ann Bot 64:241–247CrossRefGoogle Scholar
  129. Richardson KVA, Wetten AC, Caligari PDS (2001) Cell and nuclear degradation in root meristems following exposure of potatoes (Solanum tuberosum L.) to salinity. Potato Res 44:389–399CrossRefGoogle Scholar
  130. Ricroch AE, Hénard-Damave M-C (2015) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 8551:1–16CrossRefGoogle Scholar
  131. Rykaczewska K (2013) The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Amer J Plant Sci 4:2386–2393CrossRefGoogle Scholar
  132. Ryu SB, Costa A, Xin ZG, PH Li (1995) Induction of cold hardiness by salt stress involves synthesis of cold responsive and abscisic acid responsive proteins in potato (Solanum commersonii Dun.). Plant Cell Physio 1(36): 1245–1251Google Scholar
  133. Sabbah S, Tal M (1995) Salt tolerance in Solanum kurzianum and S. tuberosum cvs Alpha and Russet Burbank. Potato Res 38:319–330CrossRefGoogle Scholar
  134. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12:30–43CrossRefGoogle Scholar
  135. Sarkar D, Tiwari JK, Sharma SU, Poonam Sharma SA et al (2011) Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell Tiss Org Cult 107:427–440CrossRefGoogle Scholar
  136. Sattelmacher B, Klotz F, Marschner H (1990) Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 132:131–137CrossRefGoogle Scholar
  137. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops- bringing together genomics and genome editing. New Phytol 216:682–698PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedPubMedCentralCrossRefGoogle Scholar
  139. Silva JAB, Otoni WC, Martinez CA, Dias LM, Silva MAP (2001) Microtuberization of Andean potato species (Solanum spp.) as affected by salinity. Sci Hort 89:91–101CrossRefGoogle Scholar
  140. Singh BP, Dua VK, Govindakrishnan PM, Sharma S (2013) Impact of climate change on potato. In: Singh HP, Rao NKS, Shivashankara KS (eds) Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer, India, pp 125–136CrossRefGoogle Scholar
  141. Sliwka J, Jakuczun H, Chmielarz M, Hara-Skrzypiec A, Tomczynska I et al (2012) A resistance gene against potato late blight originating from Solanum michoacanum maps to potato chromosome VII. Theor Appl Genet 124:397–406PubMedCrossRefPubMedCentralGoogle Scholar
  142. Śliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E (2006) The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113:685–695PubMedCrossRefPubMedCentralGoogle Scholar
  143. Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JD (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252–258PubMedCrossRefPubMedCentralGoogle Scholar
  144. Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans Roy Soc B Biol Sci 367:1441–1452CrossRefGoogle Scholar
  145. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133PubMedCrossRefPubMedCentralGoogle Scholar
  146. Szajko K, Strzelczyk-Zyta D, Marczewski W (2014) Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Mol Breed 34:267–271PubMedPubMedCentralCrossRefGoogle Scholar
  147. Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2013) Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci 4:90PubMedPubMedCentralGoogle Scholar
  148. Tambussi EA, Bort J, Guiamet JJ, Araus JL (2007) The photosynthetic role of ears in C3 cereals: metabolism water use efficiency and contribution to grain yield. Crit Review Plant Sci 26:1–16CrossRefGoogle Scholar
  149. Tan MYA, Hutten RCB, Celis C, Park TH, Niks RE et al (2008) The Rpi-mcd1 locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. Mol Plant Microbe Interact 21:909–918PubMedCrossRefPubMedCentralGoogle Scholar
  150. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefPubMedCentralGoogle Scholar
  151. Tiwari JK, Ali N, Devi S, Kumar V, Zinta R, Chakrabarti SK (2018a) Development of microsatellite markers set for identification of Indian potato varieties. Sci Hort 231:22–30CrossRefGoogle Scholar
  152. Tiwari JK, Chandel P, Singh BP, Bhardwaj V (2014) Analysis of plastome and chondriome genome types in potato somatic hybrids from Solanum tuberosum x Solanum etuberosum. Genome 57:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  153. Tiwari JK, Devi S, Ali N, Luthra SK, Kumar V et al (2018b) Progress in somatic hybridization research in potato during the past 40 years. Plant Cell Tiss Org Cult 132:225–238CrossRefGoogle Scholar
  154. Tiwari JK, Devi S, Buckesth T, Ali N, Singh RK et al (2019) Precision phenotyping of contrasting potato (Solanum tuberosum L.) varieties in a novel aeroponics system for improving nitrogen use efficiency: in search of key traits and genes. J Integr Agri 18:2–12Google Scholar
  155. Tiwari JK, Devi S, Sundaresha S, Chandel P, Ali N et al (2015) Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum. Genome 58:305–313PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tiwari JK, Gopal J, Singh BP (2012) Marker-assisted selection for virus resistance in potato: options and challenges. Potato J 39:101–117Google Scholar
  157. Tiwari JK, Plett D, Garnett T, Chakrabarti SK, Singh RK (2018) Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops. Funct Plant Biol 45: 587–605CrossRefGoogle Scholar
  158. Tiwari JK, Poonam Sarkar D, Pandey SK, Gopal J, Kumar SR (2010) Molecular and morphological characterization of somatic hybrids between Solanum tuberosum L. and S. etuberosum Lindl. Plant Cell Tiss Org Cult 103:175–187CrossRefGoogle Scholar
  159. Tiwari JK, Sundaresha S, Singh BP, Kaushik SK, Chakrabarti SK et al (2013) Molecular markers for late blight resistance breeding of potato: an update. Plant Breed 132:237–245CrossRefGoogle Scholar
  160. Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 150:157–162CrossRefGoogle Scholar
  161. Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8: e62355PubMedPubMedCentralCrossRefGoogle Scholar
  162. Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330PubMedCrossRefGoogle Scholar
  163. van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P et al (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefPubMedCentralGoogle Scholar
  164. van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefPubMedCentralGoogle Scholar
  165. Van Eck J, Conlin B, Garvin D, Mason H, Navarre D, Brown C (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Amer J Potato Res 84:331–342CrossRefGoogle Scholar
  166. Velásquez B, Balzarini M, Taleisnik E (2005) Salt tolerance variability amongst Argentine Andean potatoes (Solanum tuberosum L subsp. andigena). Potato Res 48:59–67CrossRefGoogle Scholar
  167. Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol 42:579–620CrossRefGoogle Scholar
  168. Villamon FG, Spooner DM, Orrillo M, Mihovilovich E, Pérez W, Bonierbale M (2005) Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theor Appl Genet 111:1201–1214PubMedCrossRefPubMedCentralGoogle Scholar
  169. Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3:e2875PubMedPubMedCentralCrossRefGoogle Scholar
  170. Voorrips RE, Gort G, Vosman B (2011) Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinformatics 12:172PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vos J (1999) Split nitrogen application in potato: effects on accumulation of nitrogen and dry matter in the crop and on the soil nitrogen budget. J Agri Sci Camb 133:263–274CrossRefGoogle Scholar
  172. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T et al (1995) AFLP: a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wang M, Allefs S, Berg R, Vleeshouwers VGAA, Vossen EAG, Vosman B (2008) Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor Appl Genet 116:933–943PubMedCrossRefPubMedCentralGoogle Scholar
  174. Watanabe KN, Kikuchi A, Shimazaki T, Asahina M (2011) Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Res 54:319–324CrossRefGoogle Scholar
  175. Werij JS, Furrer H, van Eck HJ, Visser RGF, Bachem CWB (2012) A limited set of starch related genes explain several interrelated traits in potato. Euphytica 186:501–516CrossRefGoogle Scholar
  176. Wishart J, George TS, Brown LK, Ramsay G, Bradshaw JE et al (2013) Measuring variation in potato roots in both field and glasshouse: the search for useful yield predictors and a simple screen for root traits. Plant Soil 368:231–249CrossRefGoogle Scholar
  177. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860PubMedCrossRefGoogle Scholar
  178. Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21(8):790–797PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yan H, Ito H, Nobuta K, Ouyang S, Jin W et al (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133PubMedPubMedCentralCrossRefGoogle Scholar
  180. Ye M, Peng Z, Tang D, Yang Z, Li D et al (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zaheer K, Akhtar MH (2016) Potato production, usage, and nutrition–a review. Crit Rev Food Sci Nutr 56:711–721PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zeigler RS, Mohanty S (2010) Support for international agricultural research: current status and future challenges. New Biotechnol 27:566–572CrossRefGoogle Scholar
  183. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhang HX, Hodson JN, W’flliams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: Characterization of’ yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34Google Scholar
  186. Zhang ZJ, Mao BZ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2005) Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiol Plant 27:481–489CrossRefGoogle Scholar
  187. Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell Environ 33:740–749Google Scholar
  188. Zhu X, Gong H, He Q, Zeng Z, Busse JS, Jin W, Bethke PC, Jiang J (2016) Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. Plant Biotechnol J 14(2):709–718PubMedCrossRefPubMedCentralGoogle Scholar
  189. Zimnoch-Guzowska E, Marczewski W, Lebecka R, Flis B, Schafer-Pregl R et al (2000) QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci 40:1156–1167CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jagesh Kumar Tiwari
    • 1
    Email author
  • Clarissa Challam
    • 2
  • Swarup K. Chakrabarti
    • 1
  • Sergio E. Feingold
    • 3
  1. 1.ICAR-Central Potato Research InstituteShimlaIndia
  2. 2.ICAR-Central Potato Research Institute, Regional StationShillongIndia
  3. 3.Laboratorio de Agrobiotecnología EEA BalcarceInstituto Nacional de Tecnología Agropecuaria (INTA)BalcarceArgentina

Personalised recommendations