Advertisement

Diabetes and Tuberculosis

  • Blanca I. RestrepoEmail author
Chapter

Abstract

The worldwide increase in the prevalence of diabetes has been most notable in TB-endemic countries and has led to the re-emerging importance of the association between these two diseases. Today, type 2 diabetes is one of the most prevalent comorbidities and risk factors in TB patients, along with undernutrition and HIV/AIDS. However, it is striking how little we know about the underlying biology of the association between TB and diabetes. In this chapter, I first provide an overview of the epidemiology and characteristic clinical findings associated with patients who have both diseases. Then I review the current knowledge on underlying biology on the association. Essentially, studies in animal models of diabetes and TB and ex vivo studies with immune cells from patients with diabetes suggest a model where the initial Mycobacterium tuberculosis infection in the diabetic host is characterized by a delayed and underperforming response by monocytes and macrophages. These defects provide a critical early opportunity for favorable replication of M. tuberculosis within the diabetic alveolar macrophages. Eventual but delayed T-cell priming does occur, and in TB patients, this T-cell response is exaggerated, perhaps as a reflection of higher M. tuberculosis burden in TB with diabetes (vs. TB with no diabetes). The metabolic alterations characteristic of diabetes (e.g., chronic hyperglycemia, metabolic inflammation [meta-inflammation], oxidative stress) are likely to contribute to the immune dysfunction to mycobacteria. The discovery of these mechanisms is providing the knowledge base to design host-directed therapies for TB patients with diabetes, and perhaps those without diabetes as well.

Keywords

Tuberculosis Diabetes Immunity Epidemiology Clinical Public health 

References

  1. Abdelbary, B. E., Garcia-Viveros, M., Ramirez-Oropesa, H., Rahbar, M. H., & Restrepo, B. I. (2016). Tuberculosis-diabetes epidemiology in the border and non-border regions of Tamaulipas, Mexico. Tuberculosis (Edinburgh, Scotland), 101S, S124–S134.CrossRefGoogle Scholar
  2. Abdelbary, B. E., Garcia-Viveros, M., Ramirez-Oropesa, H., Rahbar, M. H., & Restrepo, B. I. (2017). Predicting treatment failure, death and drug resistance using a computed risk score among newly diagnosed TB patients in Tamaulipas, Mexico. Epidemiology and Infection, 145, 3020–3034.PubMedCrossRefGoogle Scholar
  3. Al-Rifai, R. H., Pearson, F., Critchley, J. A., & Abu-Raddad, L. J. (2017). Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 12, e0187967.PubMedPubMedCentralCrossRefGoogle Scholar
  4. American-Diabetes-Association. (2014). Standards of medical care in diabetes--2014. Diabetes Care, 37(Suppl 1), S14–S80.CrossRefGoogle Scholar
  5. Andrade, B. B., Pavan, K. N., Sridhar, R., Banurekha, V. V., Jawahar, M. S., Nutman, T. B., Sher, A., & Babu, S. (2014). Heightened plasma levels of heme oxygenase-1 and tissue inhibitor of metalloproteinase-4 as well as elevated peripheral neutrophil counts are associated with TB-diabetes comorbidity. Chest, 145, 1244–1254.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker, M. A., Harries, A. D., Jeon, C. Y., Hart, J. E., Kapur, A., Lonnroth, K., Ottmani, S. E., Goonesekera, S. D., & Murray, M. B. (2011). The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Medicine, 9, 81.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker, M. A., Lin, H. H., Chang, H. Y., & Murray, M. B. (2012). The risk of tuberculosis disease among persons with diabetes mellitus: A prospective cohort study. Clinical Infectious Diseases, 54, 818–825.PubMedCrossRefGoogle Scholar
  8. Bashar, M., Alcabes, P., Rom, W. N., & Condos, R. (2001). Increased incidence of multidrug-resistant tuberculosis in diabetic patients on the Bellevue Chest Service, 1987 to 1997. Chest, 120, 1514–1519.PubMedCrossRefGoogle Scholar
  9. Behr, M. A., Warren, S. A., Salamon, H., Hopewell, P. C., Ponce de, L. A., Daley, C. L., & Small, P. M. (1999). Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet, 353, 444–449.PubMedCrossRefGoogle Scholar
  10. Boillat-Blanco, N., Ramaiya, K. L., Mganga, M., Minja, L. T., Bovet, P., Schindler, C., Von Eckardstein, A., Gagneux, S., Daubenberger, C., Reither, K., et al. (2016). Transient hyperglycemia in patients with tuberculosis in Tanzania: Implications for diabetes screening algorithms. The Journal of Infectious Diseases, 213, 1163–1172.PubMedCrossRefGoogle Scholar
  11. Boucot, K. R., Dillon, E. S., Cooper, D. A., Meier, P., & Richardson, R. (1952). Tuberculosis among diabetics: The Philadelphia survey. American Review of Tuberculosis, 65, 1–50.PubMedGoogle Scholar
  12. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheekatla, S. S., Tripathi, D., Venkatasubramanian, S., Nathella, P. K., Paidipally, P., Ishibashi, M., Welch, E., Tvinnereim, A. R., Ikebe, M., Valluri, V. L., et al. (2016). NK-CD11c+ cell crosstalk in diabetes enhances IL-6-mediated inflammation during Mycobacterium tuberculosis infection. PLoS Pathogens, 12, e1005972.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dalmas, E., & Donath, M. Y. (2014). A role for interleukin-22 in the alleviation of metabolic syndrome. Nature Medicine, 20, 1379–1381.PubMedCrossRefGoogle Scholar
  15. Delgado-Sanchez, G., Garcia-Garcia, L., Castellanos-Joya, M., Cruz-Hervert, P., Ferreyra-Reyes, L., Ferreira-Guerrero, E., Hernandez, A., Ortega-Baeza, V. M., Montero-Campos, R., Sulca, J. A., et al. (2015). Association of pulmonary tuberculosis and diabetes in Mexico: Analysis of the national tuberculosis registry 2000-2012. PLoS One, 10, e0129312.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Faurholt-Jepsen, D., Aabye, M. G., Jensen, A. V., Range, N., PrayGod, G., Jeremiah, K., Changalucha, J., Faurholt-Jepsen, M., Jensen, L., Jensen, S. M., et al. (2014). Diabetes is associated with lower tuberculosis antigen-specific interferon gamma release in Tanzanian tuberculosis patients and non-tuberculosis controls. Scandinavian Journal of Infectious Diseases, 46, 384–391.PubMedCrossRefGoogle Scholar
  17. Fernandez-Real, J. M., & Pickup, J. C. (2012). Innate immunity, insulin resistance and type 2 diabetes. Diabetologia, 55, 273–278.PubMedCrossRefGoogle Scholar
  18. Fisher-Hoch, S. P., Whitney, E., McCormick, J. B., Crespo, G., Smith, B., Rahbar, M. H., & Restrepo, B. I. (2008). Type 2 diabetes and multidrug-resistant tuberculosis. Scandinavian Journal of Infectious Diseases, 40, 888–893.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Getahun, H., Gunneberg, C., Granich, R., & Nunn, P. (2010). HIV infection-associated tuberculosis: The epidemiology and the response. Clinical Infectious Diseases, 50(Suppl 3), S201–S207.PubMedCrossRefGoogle Scholar
  20. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107, 1058–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Goetze, A. M., Liu, Y. D., Arroll, T., Chu, L., & Flynn, G. C. (2012). Rates and impact of human antibody glycation in vivo. Glycobiology, 22, 221–234.PubMedCrossRefGoogle Scholar
  22. Goldhaber-Fiebert, J. D., Jeon, C. Y., Cohen, T., & Murray, M. B. (2011). Diabetes mellitus and tuberculosis in countries with high tuberculosis burdens: Individual risks and social determinants. International Journal of Epidemiology, 40, 417–428.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gomez, D. I., Twahirwa, M., Schlesinger, L. S., & Restrepo, B. I. (2013). Reduced Mycobacterium tuberculosis association with monocytes from diabetes patients that have poor glucose control. Tuberculosis, 93, 192–197.PubMedCrossRefGoogle Scholar
  24. Gomez-Gomez, A., Magana-Aquino, M., Lopez-Meza, S., Aranda-Alvarez, M., Diaz-Ornelas, D. E., Hernandez-Segura, M. G., Salazar-Lezama, M. A., Castellanos-Joya, M., & Noyola, D. E. (2015). Diabetes and other risk factors for multi-drug resistant tuberculosis in a Mexican population with pulmonary tuberculosis: Case control study. Archives of Medical Research, 46, 142–148.PubMedCrossRefGoogle Scholar
  25. Gonzalez-Curiel, I., Castaneda-Delgado, J., Lopez-Lopez, N., Araujo, Z., Hernandez-Pando, R., Gandara-Jasso, B., ias-Segura, N., Enciso-Moreno, A., & Rivas-Santiago, B. (2011). Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Human Immunology, 72, 656–662.PubMedCrossRefGoogle Scholar
  26. Guirado, E., Schlesinger, L. S., & Kaplan, G. (2013). Macrophages in tuberculosis: Friend or foe. Seminars in Immunopathology, 35, 563–583.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Harris, J., & Keane, J. (2010). How tumour necrosis factor blockers interfere with tuberculosis immunity. Clinical and Experimental Immunology, 161, 1–9.PubMedPubMedCentralGoogle Scholar
  28. Hasnain, S. Z., Borg, D. J., Harcourt, B. E., Tong, H., Sheng, Y. H., Ng, C. P., Das, I., Wang, R., Chen, A. C., Loudovaris, T., et al. (2014). Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 20, 1417–1426.PubMedCrossRefGoogle Scholar
  29. Herrera, M. T., Gonzalez, Y., Hernandez-Sanchez, F., Fabian-San Miguel, G., & Torres, M. (2017). Low serum vitamin D levels in type 2 diabetes patients are associated with decreased mycobacterial activity. BMC Infectious Diseases, 17, 610.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hsu, A. H., Lee, J. J., Chiang, C. Y., Li, Y. H., Chen, L. K., & Lin, C. B. (2013). Diabetes is associated with drug- resistant tuberculosis in Eastern Taiwan. The International Journal of Tuberculosis and Lung Disease, 17, 354–356.PubMedCrossRefGoogle Scholar
  31. Hu, F. (2011). Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care, 34, 1249–1257.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Huangfu, P., Pearson, F., Ugarte-Gil, C., & Critchley, J. (2017). Diabetes and poor tuberculosis treatment outcomes: Issues and implications in data interpretation and analysis. The International Journal of Tuberculosis and Lung Disease, 21, 1214–1219.PubMedCrossRefGoogle Scholar
  33. International-Diabetes-Federation. (2015). IDF diabetes atlas (7th ed.). Brussels, Belgium: International Diabetes Federation.Google Scholar
  34. Islamoglu, H., Cao, R., Teskey, G., Gyurjian, K., Lucar, S., Fraix, M. P., Sathananthan, A., Chan, J. K., & Venketaraman, V. (2018). Effects of ReadiSorb L-GSH in altering granulomatous responses against Mycobacterium tuberculosis infection. Journal of Clinical Medicine, 7, pii: E40.CrossRefGoogle Scholar
  35. Jeon, C. Y., & Murray, M. B. (2008). Diabetes mellitus increases the risk of active tuberculosis: A systematic review of 13 observational studies. PLoS Medicine, 5, 1091–1101.Google Scholar
  36. Jeon, C. Y., Murray, M. B., & Baker, M. A. (2012). Managing tuberculosis in patients with diabetes mellitus: Why we care and what we know. Expert Review of Anti-Infective Therapy, 10, 863–868.PubMedCrossRefGoogle Scholar
  37. Jimenez-Corona, M. E., Cruz-Hervert, L. P., Garcia-Garcia, L., Ferreyra-Reyes, L., Delgado-Sanchez, G., Bobadilla-del-Valle, M., Canizales-Quintero, S., Ferreira-Guerrero, E., Baez-Saldana, R., Tellez-Vazquez, N., et al. (2013). Association of diabetes and tuberculosis: Impact on treatment and post-treatment outcomes. Thorax, 68, 214–220.PubMedCrossRefGoogle Scholar
  38. Jorgensen, M. E., & Faurholt-Jepsen, D. (2014). Is there an effect of glucose lowering treatment on incidence and prognosis of tuberculosis? A systematic review. Current Diabetes Reports, 14, 505.PubMedCrossRefGoogle Scholar
  39. Kornfeld, H., West, K., Kane, K., Kumpatla, S., Zacharias, R. R., Martinez-Balzano, C., Li, W., & Viswanathan, V. (2016). High prevalence and heterogeneity of diabetes in patients with TB in South India: A report from the effects of diabetes on tuberculosis severity (EDOTS) study. Chest, 149, 1501–1508.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kumar, N. P., Sridhar, R., Banurekha, V. V., Jawahar, M. S., Fay, M. P., Nutman, T. B., & Babu, S. (2013a). Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Annals of the American Thoracic Society, 10, 441–449.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kumar, N. P., Sridhar, R., Banurekha, V. V., Jawahar, M. S., Nutman, T. B., & Babu, S. (2013b). Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in pulmonary tuberculosis with coincident type 2 diabetes mellitus. The Journal of Infectious Diseases, 208, 739–748.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kumar, N. P., George, P. J., Kumaran, P., Dolla, C. K., Nutman, T. B., & Babu, S. (2014). Diminished systemic and antigen-specific type 1, type 17, and other proinflammatory cytokines in diabetic and prediabetic individuals with latent Mycobacterium tuberculosis infection. The Journal of Infectious Diseases, 210, 1670–1678.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kumar, N. P., Banurekha, V. V., Nair, D., Kumaran, P., Dolla, C. K., & Babu, S. (2015a). Type 2 diabetes – tuberculosis co-morbidity is associated with diminished circulating levels of IL-20 subfamily of cytokines. Tuberculosis (Edinburgh, Scotland), 95, 707–712.CrossRefGoogle Scholar
  44. Kumar, N. P., Sridhar, R., Nair, D., Banurekha, V. V., Nutman, T. B., & Babu, S. (2015b). Type 2 diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in pulmonary tuberculosis. Immunology, 144, 677–686.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kumar, N. P., Moideen, K., George, P. J., Dolla, C., Kumaran, P., & Babu, S. (2016a). Coincident diabetes mellitus modulates Th1-, Th2-, and Th17-cell responses in latent tuberculosis in an IL-10- and TGF-beta- dependent manner. European Journal of Immunology, 46, 390–399.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kumar, N. P., Moideen, K., George, P. J., Dolla, C., Kumaran, P., & Babu, S. (2016b). Impaired cytokine but enhanced cytotoxic marker expression in Mycobacterium tuberculosis-induced CD8+ T cells in individuals with type 2 diabetes and latent Mycobacterium tuberculosis infection. The Journal of Infectious Diseases, 213, 866–870.PubMedCrossRefGoogle Scholar
  47. Kumar, N. P., Moideen, K., Sivakumar, S., Menon, P. A., Viswanathan, V., Kornfeld, H., & Babu, S. (2017a). Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors. The Journal of Infection, 74, 10–21.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kumar, N. P., Moideen, K., Viswanathan, V., Sivakumar, S., Menon, P. A., Kornfeld, H., & Babu, S. (2017b). Heightened circulating levels of antimicrobial peptides in tuberculosis-diabetes co-morbidity and reversal upon treatment. PLoS One, 12, e0184753.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kuo, M. C., Lin, S. H., Lin, C. H., Mao, I. C., Chang, S. J., & Hsieh, M. C. (2013). Type 2 diabetes: An independent risk factor for tuberculosis: A nationwide population-based study. PLoS One, 8, e78924.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lagman, M., Ly, J., Saing, T., Kaur Singh, M., Vera Tudela, E., Morris, D., Chi, P. T., Ochoa, C., Sathananthan, A., & Venketaraman, V. (2015). Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One, 10, e0118436.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lai, C. C., Lee, M. T., Lee, S. H., Hsu, W. T., Chang, S. S., Chen, S. C., & Lee, C. C. (2016). Statin treatment is associated with a decreased risk of active tuberculosis: An analysis of a nationally representative cohort. Thorax, 71, 646–651.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Leeds, I. L., Magee, M. J., Kurbatova, E. V., del, R. C., Blumberg, H. M., Leonard, M. K., & Kraft, C. S. (2012). Site of extrapulmonary tuberculosis is associated with HIV infection. Clinical Infectious Diseases, 55, 75–81.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Leung, C. C., Lam, T. H., Chan, W. M., Yew, W. W., Ho, K. S., Leung, G. M., Law, W. S., Tam, C. M., Chan, C. K., & Chang, K. C. (2008). Diabetic control and risk of tuberculosis: A cohort study. American Journal of Epidemiology, 167, 1486–1494.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lonnroth, K., Jaramillo, E., Williams, B. G., Dye, C., & Raviglione, M. (2009). Drivers of tuberculosis epidemics: The role of risk factors and social determinants. Social Science & Medicine, 68, 2240–2246.CrossRefGoogle Scholar
  55. Lonnroth, K., Roglic, G., & Harries, A. D. (2014). Improving tuberculosis prevention and care through addressing the global diabetes epidemic: From evidence to policy and practice. The Lancet Diabetes and Endocrinology, 2, 730–739.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lopez-Lopez, N., Martinez, A. G. R., Garcia-Hernandez, M. H., Hernandez-Pando, R., Castaneda-Delgado, J. E., Lugo-Villarino, G., Cougoule, C., Neyrolles, O., Rivas-Santiago, B., Valtierra-Alvarado, M. A., et al. (2018). Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Memórias do Instituto Oswaldo Cruz, 113, e170326.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Magee, M. J., Bloss, E., Shin, S. S., Contreras, C., Huaman, H. A., Ticona, J. C., Bayona, J., Bonilla, C., Yagui, M., Jave, O., et al. (2013). Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru. International Journal of Infectious Diseases, 17, e404–e412.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Magee, M. J., Kempker, R. R., Kipiani, M., Gandhi, N. R., Darchia, L., Tukvadze, N., Howards, P. P., Narayan, K. M., & Blumberg, H. M. (2015). Diabetes mellitus is associated with cavities, smear grade, and multidrug- resistant tuberculosis in Georgia. The International Journal of Tuberculosis and Lung Disease, 19, 685–692.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Martens, G. W., Arikan, M. C., Lee, J., Ren, F., Greiner, D., & Kornfeld, H. (2007). Tuberculosis susceptibility of diabetic mice. American Journal of Respiratory Cell and Molecular Biology, 37, 518–524.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Martinez, N., & Kornfeld, H. (2014). Diabetes and immunity to tuberculosis. European Journal of Immunology, 44, 617–626.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Martinez, N., Ketheesan, N., West, K., Vallerskog, T., & Kornfeld, H. (2016). Impaired recognition of Mycobacterium tuberculosis by alveolar macrophages from diabetic mice. The Journal of Infectious Diseases, 214, 1629–1637.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Morton, R. (1694). Phthisiologia, or A treatise of consumptions. London, UK.Google Scholar
  63. Muller, L. M., Gorter, K. J., Hak, E., Goudzwaard, W. L., Schellevis, F. G., Hoepelman, A. I., & Rutten, G. E. (2005). Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clinical Infectious Diseases, 41, 281–288.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Odone, A., Houben, R. M., White, R. G., & Lonnroth, K. (2014). The effect of diabetes and undernutrition trends on reaching 2035 global tuberculosis targets. The Lancet Diabetes and Endocrinology, 2, 754–764.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ottmani, S. E., Murray, M. B., Jeon, C. Y., Baker, M. A., Kapur, A., Lonnroth, K., & Harries, A. D. (2010). Consultation meeting on tuberculosis and diabetes mellitus: Meeting summary and recommendations. The International Journal of Tuberculosis and Lung Disease, 14, 1513–1517.PubMedPubMedCentralGoogle Scholar
  66. Pan, S. C., Ku, C. C., Kao, D., Ezzati, M., Fang, C. T., & Lin, H. H. (2015). Effect of diabetes on tuberculosis control in 13 countries with high tuberculosis: A modelling study. The Lancet Diabetes and Endocrinology, 3, 323–330.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Parihar, S. P., Guler, R., Khutlang, R., Lang, D. M., Hurdayal, R., Mhlanga, M. M., Suzuki, H., Marais, A. D., & Brombacher, F. (2014). Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. The Journal of Infectious Diseases, 209, 754–763.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Perez-Navarro, L. M., Fuentes-Dominguez, F. J., & Zenteno-Cuevas, R. (2015). Type 2 diabetes mellitus and its influence in the development of multidrug resistance tuberculosis in patients from southeastern Mexico. Journal of Diabetes and its Complications, 29, 77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Perez-Navarro, L. M., Restrepo, B. I., Fuentes-Dominguez, F. J., Duggirala, R., Morales-Romero, J., Lopez-Alvarenga, J. C., Comas, I., & Zenteno-Cuevas, R. (2017). The effect size of type 2 diabetes mellitus on tuberculosis drug resistance and adverse treatment outcomes. Tuberculosis (Edinburgh, Scotland), 103, 83–91.CrossRefGoogle Scholar
  70. Pickup, J. C. (2004). Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care, 27, 813–823.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Podell, B. K., Ackart, D. F., Obregon-Henao, A., Eck, S. P., Henao-Tamayo, M., Richardson, M., Orme, I. M., Ordway, D. J., & Basaraba, R. J. (2014). Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. American Journal of Pathology, 184, 1104–1118.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ponce-De-Leon, A., Garcia-Garcia, M. D. L., Garcia-Sancho, M. C., Gomez-Perez, F. J., Valdespino-Gomez, J. L., Olaiz-Fernandez, G., Rojas, R., Ferreyra-Reyes, L., Cano-Arellano, B., Bobadilla, M., et al. (2004). Tuberculosis and diabetes in southern Mexico. Diabetes Care, 27, 1584–1590.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Prada-Medina, C. A., Fukutani, K. F., Pavan Kumar, N., Gil-Santana, L., Babu, S., Lichtenstein, F., West, K., Sivakumar, S., Menon, P. A., Viswanathan, V., et al. (2017). Systems immunology of diabetes-tuberculosis comorbidity reveals signatures of disease complications. Scientific Reports, 7, 1999.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Reed, G. W., Choi, H., Lee, S. Y., Lee, M., Kim, Y., Park, H., Lee, J., Zhan, X., Kang, H., Hwang, S., et al. (2013). Impact of diabetes and smoking on mortality in tuberculosis. PLoS One, 8, e58044.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Reis-Santos, B., Locatelli, R., Horta, B. L., Faerstein, E., Sanchez, M. N., Riley, L. W., & Maciel, E. L. (2013). Socio-demographic and clinical differences in subjects with tuberculosis with and without diabetes mellitus in Brazil – a multivariate analysis. PLoS One, 8, e62604.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Restrepo, B. I. (2007). Convergence of the tuberculosis and diabetes epidemics: Renewal of old acquaintances. Clinical Infectious Diseases, 45, 436–438.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Restrepo, B. I. (2016). Metformin: Candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients. Tuberculosis, 101, S69–S72.CrossRefGoogle Scholar
  78. Restrepo, B. I., & Schlesinger, L. S. (2014). Impact of diabetes on the natural history of tuberculosis. Diabetes Research and Clinical Practice, 106, 191–199.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Restrepo, B. I., Fisher-Hoch, S. P., Crespo, J. G., Whitney, E., Perez, A., Smith, B., & McCormick, J. B. (2007). Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiology and Infection, 135, 483–491.PubMedCrossRefGoogle Scholar
  80. Restrepo, B. I., Fisher-Hoch, S., Pino, P., Salinas, A., Rahbar, M. H., Mora, F., Cortes-Penfield, N., & McCormick, J. (2008a). Tuberculosis in poorly controlled type 2 diabetes: Altered cytokine expression in peripheral white blood cells. Clinical Infectious Diseases, 47, 634–641.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Restrepo, B. I., Fisher-Hoch, S., Smith, B., Jeon, S., Rahbar, M. H., & McCormick, J. (2008b). Mycobacterial clearance from sputum is delayed during the first phase of treatment in patients with diabetes. The American Journal of Tropical Medicine and Hygiene, 79, 541–544.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Restrepo, B. I., Camerlin, A. J., Rahbar, M. H., Wang, W., Restrepo, M. A., Zarate, I., Mora-Guzman, F., Crespo-Solis, J. G., Briggs, J., McCormick, J. B., et al. (2011). Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bulletin of the World Health Organization, 89, 352–359.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Restrepo, B. I., Twahirwa, M., Rahbar, M. H., & Schlesinger, L. S. (2014). Phagocytosis via complement or Fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS One, 9, e92977.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ronacher, K., Joosten, S. A., van Crevel, R., Dockrell, H. M., Walzl, G., & Ottenhoff, T. H. (2015). Acquired immunodeficiencies and tuberculosis: Focus on HIV/AIDS and diabetes mellitus. Immunological Reviews, 264, 121–137.PubMedCrossRefGoogle Scholar
  85. Root, H. (1934). The association of diabetes and tuberculosis. New England Journal of Medicine, 210, 1–13.CrossRefGoogle Scholar
  86. Russell, D. G. (2007). Who puts the tubercle in tuberculosis? Nature Reviews. Microbiology, 5, 39–47.PubMedCrossRefGoogle Scholar
  87. Shah, B. R., & Hux, J. E. (2003). Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care, 26, 510–513.PubMedCrossRefGoogle Scholar
  88. Silwer, H., & Oscarsson, P. N. (1958). Incidence and coincidence of diabetes mellitus and pulmonary tuberculosis in a Swedish county. Acta Medica Scandinavica. Supplementum, 335, 1–48.PubMedGoogle Scholar
  89. Singhal, A., Jie, L., Kumar, P., Hong, G. S., Leow, M. K., Paleja, B., Tsenova, L., Kurepina, N., Chen, J., Zolezzi, F., et al. (2014). Metformin as adjunct antituberculosis therapy. Science Translational Medicine, 6, 263ra159.PubMedCrossRefGoogle Scholar
  90. Stalenhoef, J. E., Alisjahbana, B., Nelwan, E. J., van der Ven-Jongekrijg, J., Ottenhoff, T. H., van der Meer, J. W., Nelwan, R. H., Netea, M. G., & van Crevel, R. (2008). The role of interferon-gamma in the increased tuberculosis risk in type 2 diabetes mellitus. European Journal of Clinical Microbiology & Infectious Diseases, 27, 97–103.CrossRefGoogle Scholar
  91. Stevenson, C. R., Critchley, J. A., Forouhi, N. G., Roglic, G., Williams, B. G., Dye, C., & Unwin, N. C. (2007a). Diabetes and the risk of tuberculosis: A neglected threat to public health? Chronic Illness, 3, 228–245.PubMedCrossRefGoogle Scholar
  92. Stevenson, C. R., Forouhi, N. G., Roglic, G., Williams, B. G., Lauer, J. A., Dye, C., & Unwin, N. (2007b). Diabetes and tuberculosis: The impact of the diabetes epidemic on tuberculosis incidence. BMC Public Health, 7, 234.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stirban, A., Gawlowski, T., & Roden, M. (2014). Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Molecular Metabolism, 3, 94–108.PubMedCrossRefGoogle Scholar
  94. Su, V. Y., Su, W. J., Yen, Y. F., Pan, S. W., Chuang, P. H., Feng, J. Y., Chou, K. T., Yang, K. Y., Lee, Y. C., & Chen, T. J. (2017). Statin use is associated with a lower risk of TB. Chest, 152, 598–606.PubMedCrossRefGoogle Scholar
  95. Subhash, H. S., Ashwin, I., Mukundan, U., Danda, D., John, G., Cherian, A. M., & Thomas, K. (2003). Drug resistant tuberculosis in diabetes mellitus: A retrospective study from South India. Tropical Doctor, 33, 154–156.PubMedCrossRefGoogle Scholar
  96. Sun, Q., Zhang, Q., Xiao, H., Cui, H., & Su, B. (2012). Significance of the frequency of CD4+CD25+CD127- T-cells in patients with pulmonary tuberculosis and diabetes mellitus. Respirology, 17, 876–882.PubMedCrossRefGoogle Scholar
  97. Tan, K. S., Lee, K. O., Low, K. C., Gamage, A. M., Liu, Y., Tan, G. Y., Koh, H. Q., Alonso, S., & Gan, Y. H. (2012). Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. The Journal of Clinical Investigation, 122, 2289–2300.PubMedPubMedCentralCrossRefGoogle Scholar
  98. The Diabetes Control and Complications Trial Research Group, Nathan, D. M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., et al. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine, 329, 977–986. https://doi.org/10.1056/NEJM199309303291401CrossRefGoogle Scholar
  99. Vallerskog, T., Martens, G. W., & Kornfeld, H. (2010). Diabetic mice display a delayed adaptive immune response to Mycobacterium tuberculosis. Journal of Immunology, 184, 6275–6282.CrossRefGoogle Scholar
  100. Viney, K., Brostrom, R., Nasa, J., Defang, R., & Kienene, T. (2014). Diabetes and tuberculosis in the Pacific Islands region. The Lancet Diabetes and Endocrinology, 2, 932.PubMedCrossRefGoogle Scholar
  101. Viswanathan, V., Kumpatla, S., Aravindalochanan, V., Rajan, R., Chinnasamy, C., Srinivasan, R., Selvam, J. M., & Kapur, A. (2012). Prevalence of diabetes and pre-diabetes and associated risk factors among tuberculosis patients in India. PLoS One, 7, e41367.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Viswanathan, V., Vigneswari, A., Selvan, K., Satyavani, K., Rajeswari, R., & Kapur, A. (2014). Effect of diabetes on treatment outcome of smear-positive pulmonary tuberculosis--a report from South India. Journal of Diabetes and its Complications, 28, 162–165.PubMedCrossRefGoogle Scholar
  103. Walker, C., & Unwin, N. (2010). Estimates of the impact of diabetes on the incidence of pulmonary tuberculosis in different ethnic groups in England. Thorax, 65, 578–581.PubMedCrossRefGoogle Scholar
  104. Walsh, M., Camerlin, A., Miles, R., Pino, P., Martinez, P., Mora-Guzman, F., Crespo-Solis, J., Fisher-Hoch, S., McCormick, J., & Restrepo, B. I. (2010). Sensitivity of interferon-gamma release assays is not compromised in tuberculosis patients with diabetes. The International Journal of Tuberculosis and Lung Disease, 15, 179–184.Google Scholar
  105. Wang, P. D., & Lin, R. S. (2001). Drug-resistant tuberculosis in Taipei, 1996-1999. American Journal of Infection Control, 29, 41–47.PubMedCrossRefGoogle Scholar
  106. Wang, C. H., Yu, C. T., Lin, H. C., Liu, C. Y., & Kuo, H. P. (1999). Hypodense alveolar macrophages in patients with diabetes mellitus and active pulmonary tuberculosis. Tubercle and Lung Disease, 79, 235–242.PubMedCrossRefGoogle Scholar
  107. Webb, E. A., Hesseling, A. C., Schaaf, H. S., Gie, R. P., Lombard, C. J., Spitaels, A., Delport, S., Marais, B. J., Donald, K., Hindmarsh, P., et al. (2009). High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. The International Journal of Tuberculosis and Lung Disease, 13, 868–874.PubMedGoogle Scholar
  108. Yamashiro, S., Kawakami, K., Uezu, K., Kinjo, T., Miyagi, K., Nakamura, K., & Saito, A. (2005). Lower expression of Th1-related cytokines and inducible nitric oxide synthase in mice with streptozotocin-induced diabetes mellitus infected with Mycobacterium tuberculosis. Clinical and Experimental Immunology, 139, 57–64.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhan, Y., & Jiang, L. (2015). Status of vitamin D, antimicrobial peptide cathelicidin and T helper-associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis. Experimental and Therapeutic Medicine, 9, 11–16.PubMedCrossRefGoogle Scholar
  110. Zumla, A., Rao, M., Parida, S. K., Keshavjee, S., Cassell, G., Wallis, R., Axelsson-Robertsson, R., Doherty, M., Andersson, J., & Maeurer, M. (2015). Inflammation and tuberculosis: Host-directed therapies. Journal of Internal Medicine, 277, 373–387.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.UTHealth Houston, School of Public HealthBrownsvilleUSA

Personalised recommendations