Sensing of Phase-Change Memory

  • Mohammad Nasim Imtiaz KhanEmail author
  • Alexander Jones
  • Rashmi Jha
  • Swaroop Ghosh


PCM is an emerging non-volatile memory that offers high integration density and high endurance. The speed of PCM is comparable to DRAM. However, PCM sense operation incurs issues due to the resistance drifting phenomenon, high sensing time, sense time variation from cell to cell, etc. Therefore, conventional sensing techniques need to be modified. In this chapter, we describe these issues along with the basics of PCM cell design and PCM read/write operation. We also summarized state-of-the-art PCM-specific sensing schemes proposed to address different PCM-sensing issues.


Non-volatile memory PCM PCM read/write operation PCM sensing Read/write circuitry Multi-level cell sensing PCM-sensing challenges Resistance drifting Sensing time variation Sensing time 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Boniardi M et al (2014) Optimization metrics for phase change memory (PCM) cell architectures. Electron Devices Meeting (IEDM)Google Scholar
  6. 6.
    Russo U et al (2008) Modeling of programming and read performance in phase-change memories-Part I: cell optimization and scaling. IEEE Trans Electron Devices 506–514Google Scholar
  7. 7.
    Servalli G (2009) A 45 nm generation phase change memory technology. IEEE International, pp 1–4Google Scholar
  8. 8.
    Pellizer F et al (2004) Novel μtrench phase-change memory cell for embedded and stand-alone non-volatile memory applications. Symposium on VLSI Technology Digest of Technical PapersGoogle Scholar
  9. 9.
    Kim ET, Lee JY, Kim YT (2009) Investigation of electrical characteristics of the In3Sb1Te2 ternary alloy for application in phase-change memory. Phys Status Solidi (RRL) 103–105Google Scholar
  10. 10.
    Ahn JK et al (2010) Metalorganic chemical vapor deposition of non-GST chalcogenide materials for phase change memory applications. J Mater Chem 1751–1754Google Scholar
  11. 11.
    Sebastian A, Gallo ML, Krebs D (2014) Crystal growth within a phase change memory cell. Nat Commun 4314Google Scholar
  12. 12.
    Junsangsri P, Han J, Lombardi F (2017) Design and comparative evaluation of a PCM-based CAM (Content Addressable Memory) cell. IEEE Trans Nanotechnol 359–363Google Scholar
  13. 13.
    Vatajelu EI, Pouyan P, Hamdioui S (2018) State of the art and challenges for test and reliability of emerging nonvolatile resistive memories. Int J Circuit Theory Appl 46(1):4–28CrossRefGoogle Scholar
  14. 14.
    Mohammad MG (2011) Fault model and test procedure for phase change memory. IET Comput Digital Tech 5(4):263–270CrossRefGoogle Scholar
  15. 15.
    Pirovano A, Redaelli A, Pellizzer F, Ottogalli F, Tosi M, Ielmini D, Lacaita AL, Bez R (2004) Reliability study of phase-change nonvolatile memories. IEEE Trans Device Mater Reliab 4(3):422–427Google Scholar
  16. 16.
    El-Hassan NH, Nandha Kumar T, Almurib HAF (2016) Implementation of time-aware sensing technique for multilevel phase change memory cell. Microelectron J 56:74–80Google Scholar
  17. 17.
    Lai S (2003) Current status of the phase change memory and its future. In: IEEE International Electron Devices Meeting. IEDM’03 Technical Digest. IEEE, pp 10–11Google Scholar
  18. 18.
    Lin L-C, Sheu S-S, Chiang P-C (2007) Sensing circuit of a phase change memory and sensing method thereof. US 11/968,041, Dec 2007Google Scholar
  19. 19.
    Nair PJ, Chou C, Rajendran B, Qureshi MK (2015) Reducing read latency of phase change memory via early read and turbo read. In: 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, pp 309–319Google Scholar
  20. 20.
    Berger J (1961) A note on error detection codes for asymmetric channels. Inf Control 4(1):68–73MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lavizzari S, Ielmini D, Sharma D, Lacaita A (2008) Transient effects of delay, switching and recovery in phase change memory (pcm) devices. In: IEEE International Electron Devices Meeting, 2008. IEDM 2008Google Scholar
  22. 22.
    Jurasek RA, Willey AD (2014) Multilevel differential sensing in phase change memory. US 14/223,199, Mar 2014Google Scholar
  23. 23.
    Happ TD, Lung HL, Nirschl T (2007) Current compliant sensing architecture for multilevel phase change memory. US 11/620,432, Jan 2007Google Scholar
  24. 24.
    Li J et al (2011) A novel reconfigurable sensing scheme for variable level storage in phase change memory. In: 2011 3rd IEEE International Memory Workshop (IMW), Monterey, CA, pp 1–4Google Scholar
  25. 25.
    Lin W-P, Sheu S-S, Chiang P-C (2003) Verification circuits and methods for phase change memory array. US 13/934,954, July 2003Google Scholar
  26. 26.
    Balasubramanian M (2009) Phase change memory: array development and sensing circuits using delta-sigma modulation. Thesis, Boise State University, Summer 2009Google Scholar
  27. 27.
    Ande HK, Busa P, Balasubramanian M, Campbell KA, Baker RJ (2008) A new approach to the design, fabrication, and testing of chalcogenide-based phase-change nonvolatile memory. In: Proceedings of the 51st Midwest Symposium on Circuits and Systems, 10–13 August 2008, pp 570–573Google Scholar
  28. 28.
    Campbell KA, Anderson CM (2007) Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers. Microelectron J 38:52–59CrossRefGoogle Scholar
  29. 29.
    Markus J, Deval P, Quiquempoix V, Silva J, Temes GC (2006) Incremental delta-sigma structures for DC measurement: an overview. In: IEEE Custom Integrated Circuit Conferences, 10–13 September 2006, pp 41–48Google Scholar
  30. 30.
    Oliver J, Lehne M, Vummidi K, Bell S (2008) Raman low power CMOS sigmadelta readout circuit for heterogeneously integrated chemoresistive micro-/nanosensor arrays. In: IEEE International Circuits and Systems Symposium (ISCAS), May 2008, pp 2098–2101Google Scholar
  31. 31.
    Baker RJ (2008) CMOS: circuit design, layout and simulation, 2nd edn. Wiley-IEEE, pp 483–504Google Scholar
  32. 32.
    Baker RJ (2006) Resistive memory element sensing using averaging. U.S. Patent Number 7,133,307, 7 Nov 2006Google Scholar
  33. 33.
    Terada Y et al (1989) 120 ns 128Kx8-bit/64Kx16-bit CMOS EEPROM’s. IEEE J Solid-States Circuits 24(5):1224–1249Google Scholar
  34. 34.
    Kuo C et al (1992) A 512-Kb flash EEPROM embedded in a 32-b microcontroller. IEEE J Solid-States Circuits 27(4):574–582Google Scholar
  35. 35.
    Papaix C, Daga JM (2002) A new single ended sense amplifier for low voltage embedded EEPROM non volatile memories. In: Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002), pp 149–153Google Scholar
  36. 36.
    Sinha M et al (2003) High-performance and low-voltage sense-amplifier techniques for sub-90 nm SRAM. In: Proceedings of the International Systems-on-Chip Conference (SOC 03), pp 113–116Google Scholar
  37. 37.
    Ielmini D, Sharma D, Lavizzari S, Lacaita AL (2009) Reliability impact of chalcogenide-structure relaxation in phase-change memory (PCM) cells-Part I: experimental study. Proc IEEE Trans Electron Devices 56:1070–1077.
  38. 38.
    Li J, Luan B, Lam C (2012) Resistance drifting phase change memory. In: Proceedings of the IEEE International Reliability Physics Symposium, pp 1–6.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Nasim Imtiaz Khan
    • 1
    Email author
  • Alexander Jones
    • 2
  • Rashmi Jha
    • 2
  • Swaroop Ghosh
    • 1
  1. 1.Pennsylvania State UniversityState CollegeUSA
  2. 2.University of CincinnatiCincinnatiUSA

Personalised recommendations