Sensing of Spintronic Memories

  • Behzad Zeinali
  • Farshad MoradiEmail author


Leakage power increase due to technology scaling has attracted a lot of attention to developing nonvolatile memory (NVM) technologies. Among the explored NVM candidates by the community, spintronic-based technologies such as magnetic RAM and spin-transfer torque RAM seem to be very promising. Conventionally, the main challenge of employing MRAMs as a possible candidate in universal memories is high power dissipation and long delay during write operation. However, in recent cutting-edge semiconductor technologies, the issue moves from write to read operation mainly due to significant suppression in read margin. Degradation in the read yield emerges from the increase in process variation and lowering of the supply voltage. Therefore, numerous research activities have been recently conducted to improve the read margin. This chapter reviews the sensing techniques, which have been developed to deal with the read margin degradation of MRAMs in scaled technology nodes. In addition, the chapter provides a background on different writing methods of MRAMs and possible solutions to improve the density of bit-cells.


Magnetic RAM (MRAM) Spin-transfer torque (STT) MRAM SOT-MRAM Racetrack memory Destructive sensing Nondestructive sensing Error-tolerant sense amplifier Self-reference sensing Sense amplifier Slope sensing 


  1. 1.
    Chau R, Doyle B, Datta S, Kavalieros J, Zhang K (2007) Integrated nanoelectronics for the future. Nature Mater 6(11):810–812CrossRefGoogle Scholar
  2. 2.
    Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep submicrometer CMOS circuits. Proc IEEE 91(2):305–327CrossRefGoogle Scholar
  3. 3.
    Pal A (2014) Low-Power VLSI circuits and systems. Springer, New DelhiGoogle Scholar
  4. 4.
    Chen YH, Chan WM, Wu WC, Liao HJ, Pan KH, Liaw JJ, Chung TH, Li Q, Lin CY, Chiang MC, Wu SY, Chang J (2015) A 16 nm 128 Mb SRAM in high-k metal-gate finfet technology with write-assist circuitry for low-VMIN applications. IEEE J Solid-State Circuits 50(1):170–177CrossRefGoogle Scholar
  5. 5.
    Raychowdhury A, Geuskens B, Kulkarni J, Tschanz J, Bowman K, Karnik T, Lu SL, De V, Khellah MM (2010) PVT-and-aging adaptive word-line boosting for 8T SRAM power reduction. In: IEEE ISSCC Digest of Technical Papers, pp 352–353Google Scholar
  6. 6.
    Verma N, Chandrakasan A (2008) A 256 kb 65 nm 8T sub-Vt SRAM employing sense-amplifier redundancy. IEEE J Solid-State Circuits 43(1):141–149CrossRefGoogle Scholar
  7. 7.
    Hirabayashi O, Kawasumi A, Suzuki A, Takeyama Y, Kushida K, Sasaki T, Katayama A, Fukano G, Fujimura Y, Nakazato T, Shizuki Y, Kushiyama N, Yabe T (2009) A process-variation-tolerant dual-power-supply SRAM with 0.179 µm2 cell in 40 nm CMOS using level-programmable wordline driver. In: IEEE Int. Solid-State Circuits Conference on Digest of Technical Papers, pp 458–459Google Scholar
  8. 8.
    Nii K, Yabuuchi M, Tsukamoto Y, Ohbayashi S, Oda Y, Usui K, Kawamura T, Tsuboi N, Iwasaki T, Hashimoto K, Makino H, Shinohara H (2008) A 45-nm single-port and dual-port SRAM family with robust read/write stabilizing circuitry under DVFS environment. In: VLSI Circuits Dig, pp 212–213Google Scholar
  9. 9.
    Ghanatian H, Hosseini SE, Zeinali B, Moradi F (2017) Quasi-Schottky-Barrier UTBB SOI MOSFET for low-power robust SRAMs. IEEE Trans Electron Devices 64(4):1575–1582CrossRefGoogle Scholar
  10. 10.
    Rim K, Chan K, Shi L, Boyd D, Ott J, Klymko N, Cardone F, Tai L, Koester S, Cobb M, Canaperi D, To B, Duch E, Babich I, Carruthers R, Saunders P, Walker G, Zhang Y, Steen M, Ieong M (2003) Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. In: Int. Electron Device Meeting (IEDM) Technical Digest, pp 47–52Google Scholar
  11. 11.
    Wilk GD, Wallace RM, Anthony JM (2001) High-K gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275CrossRefGoogle Scholar
  12. 12.
    Ota H, Hirano A, Watanabe Y, Yasuda N, Iwamoto K, Akiyama K, Okada K, Migita S, Nabatame S, Toriumi A (2007) Intrinsic origin of electron mobility reduction in high-K MOSFETs—from remote phonon to bottom interface dipole scattering. In: International Electron Device Meeting (IEDM) Technical Digest, pp 65–68Google Scholar
  13. 13.
    Frank DJ, Wong HSP (2000) Analysis of the design space available for high-k gate dielectrics in nanoscale MOSFETs. Superlattices Microstruct 28(5–6):485–491CrossRefGoogle Scholar
  14. 14.
    Bagheriye L, Toofan S, Saeidi R, Zeinali B, Moradi F (2017) A reduced store/restore energy MRAM-Based SRAM cell for a non-volatile dynamically reconfigurable FPGA. In: IEEE transactions on circuits and systems II: Express briefsGoogle Scholar
  15. 15.
    Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18(6):33–40Google Scholar
  16. 16.
    Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C, Nagao N, Kano H (2005) A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-RAM. In: International Electron Device Meeting (IEDM) Technical Digest, pp 473–476Google Scholar
  17. 17.
    Mangin S, Ravelosona D, Katine JA, Carey MJ, Terris BD, Fullerton EE (2006) Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater 5:210–215CrossRefGoogle Scholar
  18. 18.
    Meng H, Wang JP (2006) Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl Phys Lett 88:172506Google Scholar
  19. 19.
    Kishi T, Yoda H, Kai T, Nagase T, Kitagawa E, Yoshikawa M, Nishiyama K, Daibou T, Nagamine M, Amano M, Takahashi S, Nakayama M, Shimomura N, Aikawa H, Ikegawa S, Yuasa S, Yakushiji K, Kubota H, Fukushima A, Oogane M, Miyazaki T, Ando K (2008) Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In: International Electron Device Meeting (IEDM) Technical Digest, pp 309–312Google Scholar
  20. 20.
    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y (2002) Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J Appl Phys 91(8):5246–5249CrossRefGoogle Scholar
  21. 21.
    Ohmori H, Hatori T, Nakagawa S (2008) Perpendicular magnetic tunnel junction with tunnelling magnetoresistance ratio of 64% using MgO(100) barrier layer prepared at room temperature. J Appl Phys 103:07A911Google Scholar
  22. 22.
    Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H (2008) Tunnel magnetoresistance over 100% in MgO-based magnetic tunnel junction films with perpendicular magnetic L10-FePt electrodes. IEEE Trans Magn 44(11):2573–2576CrossRefGoogle Scholar
  23. 23.
    Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T (2008) Tunnelling magnetoresistance of magnetic tunnel junctions using perpendicular magnetization L10-CoPt electrodes. Appl Phys Lett 92:172502Google Scholar
  24. 24.
    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B (2008) Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy. Appl. Phys. Lett 92:102508Google Scholar
  25. 25.
    Park JH, Park C, Jeong T, Moneck MT, Nufer NT, Zhu JG (2008) Co/Pt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy. J. Appl. Phys 103:07A917Google Scholar
  26. 26.
    Mizunuma K, Ikeda S, Park JH, Yamamoto H, Gan H, Miura K, Hasegawa H, Hayakawa J, Matsukura F, Ohno H (2009) MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers. Appl Phys Lett 95:232516Google Scholar
  27. 27.
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater 9:721–724CrossRefGoogle Scholar
  28. 28.
    Carpentieri M, Tomasello R, Ricci M, Burrascano P, Finocchio G. Micromagnetic study of electrical-field-assisted magnetization switching in MTJ devices. In: IEEE Transactions on Magnetics 50(11)Google Scholar
  29. 29.
    Fong X, Kim Y, Choday SH, Roy K (2014) Failure mitigation techniques for 1T-1MTJ spin-transfer torque MRAM bit-cells. IEEE Trans Very Large Scale Integ Syst 22(2):384–395Google Scholar
  30. 30.
    Jovanovic B, Brum RM, Torres L (2015) Comparative analysis of MTJ/CMOS hybrid cells based on TAS and in-plane STT magnetic tunnel junctions. In: IEEE Transactions on Magnetics 51(2)Google Scholar
  31. 31.
    He W, Zhu T, Zhang XQ, Yang HT, Cheng ZH (2013) Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current. Sci Rep 3:2883Google Scholar
  32. 32.
    Farkhani H, Peiravi A, Moradi F (2016) Low-energy write operation for 1T-1MTJ STT-RAM bitcells with negative bitline technique. IEEE Trans Very Large Scale Integ (VLSI) Syst 24(4):1593–1597Google Scholar
  33. 33.
    Zheng T, Park J, Orshansky M, Erez M. Variable-energy write STT-RAM architecture with bit-wise write-completion monitoring. In: Symposium on Low Power Electronics and Design, pp 229–234Google Scholar
  34. 34.
    Panagopoulos GD, Augustine C, Roy K (2013) Physics-based SPICE-compatible compact model for simulating hybrid MTJ/CMOS circuits. IEEE Trans Electron Devices 60(9):2808–2814CrossRefGoogle Scholar
  35. 35.
    Guo W, Prenat G, Javerliac V, El Baraji M, De Mestier D, Baraduc C, Dieny B (2010) SPICE modeling of magnetic tunnel junctions written by spin-transfer torque. J Appl Phys 43:215001Google Scholar
  36. 36.
    Madec M, Kammerer JB, Pregaldiny F, Herbrard L, Lallement C (2008) Compact modeling of magnetic tunnel junction. In: Proceedings on 6th International IEEE Northeast Workshop on Circuits System TAISA Conference, pp 229–232Google Scholar
  37. 37.
    Iga F, Yoshida Y, Ikeda S, Hanyu T, Ohno H, Endoh T (2012) Time-resolved switching characteristic in magnetic tunnel junction with spin transfer torque write scheme. Jpn J Appl Phys 51Google Scholar
  38. 38.
    Devolder T, Hayakawa J, Ito K, Takahashi H, Ikeda S, Crozat P, Zerounian N, Kim JV, Chappert C, Ohno H (2008) Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. Phys Rev Lett 100(5)Google Scholar
  39. 39.
    Farkhani H, Peiravi A, Madsen JK, Moradi F (2015) STT-RAM write energy consumption reduction by differential write termination method. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp 2936–2939Google Scholar
  40. 40.
    Farkhani H, Tohidi M, Peiravi A, Madsen JK, Moradi F (2017) STT-RAM energy reduction using self-referenced differential write termination technique. IEEE Trans Very Large Scale Integ (VLSI) Syst 25(2):476–487Google Scholar
  41. 41.
    Zeinali B, Karsinos D, Moradi F (2017) Progressive scaled STT-RAM for approximate computing in multimedia applications. IEEE Trans Circuits Syst II: Exp BriefsGoogle Scholar
  42. 42.
    Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater 9:230–234CrossRefGoogle Scholar
  43. 43.
    Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature Lett 476:189–194CrossRefGoogle Scholar
  44. 44.
    Liu L, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA (2012) Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys Rev Lett 109:096602Google Scholar
  45. 45.
    Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin Hall effect of tantalum. Science 336:555–558CrossRefGoogle Scholar
  46. 46.
    Pai CF, Liu L, Tseng HW, Ralph DC, Buhrman RA. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl Phys Lett 101(12)Google Scholar
  47. 47.
    Dyakonov MI, Perel VI (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35(6):459–460CrossRefGoogle Scholar
  48. 48.
    Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83(9)Google Scholar
  49. 49.
    Zhang S (2000) Spin Hall effect in the presence of spin diffusion. Phys Rev Lett 85(2):393–396CrossRefGoogle Scholar
  50. 50.
    Bychkov YA, Rashba EI (1984) Properties of a 2D electron gas with lifted spectral degeneracy. J Exp Theor Phys Lett 39(2):78–81Google Scholar
  51. 51.
    Yu G, Upadhyaya P, Fan Y, Alzate JG, Jiang W, Wong KL, Takei S, Bender SA, Chang LT, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri PK, Wang KL (2014) Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotechnol 9:548–554CrossRefGoogle Scholar
  52. 52.
    Dyakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. J Exp Theor Phys Lett 13(11):467–469Google Scholar
  53. 53.
    Jungwirth T, Wunderlich J, Olejník K (2012) Spin Hall effect devices. Nature Mater 11:382–389CrossRefGoogle Scholar
  54. 54.
    Zeinali B, Madsen JK, Raghavan P, Moradi F (2017) Ultra-Fast SOT-MRAM Cell with STT current for deterministic switching. In: IEEE International Conference on Computer Design (ICCD), pp 463–468Google Scholar
  55. 55.
    Wang Z, Zhao W, Deng E, Klein JO, Chappert C (2015) Perpendicular-anisotropy magnetic tunnel junction switched by spin Hall-assisted spin-transfer torque. J Phys D Appl Phys 48(6):065001CrossRefGoogle Scholar
  56. 56.
    Seo Y, Kwon KW, Roy K (2016) Area-efficient SOT-MRAM with a Schottky diode. IEEE Elect Dev Lett 37(8):982–985CrossRefGoogle Scholar
  57. 57.
    Kim Y, Fong X, Kwon KW, Chen MC, Roy K (2015) Multilevel spin-orbit torque MRAMs. IEEE Trans Elect Dev 62(2):561–568CrossRefGoogle Scholar
  58. 58.
    Seo Y, Fong X, Kwon KW, Roy K. Spin-Hall magnetic random-access memory with dual read/write ports for on-chip caches. IEEE Magn Lett 6Google Scholar
  59. 59.
    Zeinali B, Esmaeili M, Madsen JK, Moradi F (2017) Multilevel SOT-MRAM cell with a novel sensing scheme for high-density memory applications. In: 47th European Solid-State Device Research Conference (ESSDERC), pp 172–175Google Scholar
  60. 60.
    Ghosh S (2013) Design methodologies for high density domain wall memory. In: NANOARCHGoogle Scholar
  61. 61.
    Dong Q, Yang K, Fick L, Fick D, Blaauw D, Sylvester D. Low-power and compact analog-to-digital converter using spintronic racetrack memory devices. IEEE Trans Very Large Scale Integ (VLSI) Syst 25(3):907–918Google Scholar
  62. 62.
    Kim J, Na T, Kim JP, Kang SH, Jung SO (2014) A, split-path sensing circuit for spin torque transfer MRAM. IEEE Trans Circuits Syst-II Exp Briefs 61(3):193–197CrossRefGoogle Scholar
  63. 63.
    Na T, Kim JP, Kang SH, Jung SO (2016) Multiple-cell reference scheme for reduced reference resistance distribution in deep submicrometer STT-RAM. IEEE Trans Very Large Scale Integ (VLSI) Syst 24(9):2993–2997Google Scholar
  64. 64.
    Ono K, Kawahara T, Takemura R, Miura K, Yamamoto H, Yamanouchi M, Hayakawa J, Ito K, Takahashi H, Ikeda S, Hasegawa H, Matsuoka H, Ohno H (2009) A disturbance-free read scheme and a compact stochastic-spin-dynamics-based mtj circuit model for Gb-scale SPRAM. In: Proceedings of IEEE International Electron Devices Meeting, pp 1–4Google Scholar
  65. 65.
    Ren F, Park H, Dorrance R, Toriyama Y, Yang CKK. A body-voltage-sensing-based short pulse reading circuit for spin-torque transfer RAMs (STT-RAMs). In: Proceedings of 13th International Symposium Quality Electronic Design (ISQED’12), pp 275–282Google Scholar
  66. 66.
    Ren F, Park H, Yang CKK, Markovic D. Reference calibration of body-voltage sensing circuit for high-speed STT-RAMs. IEEE Trans. Circuits Syst. I: Reg. Papers 60(11):2932–2939Google Scholar
  67. 67.
    Maffitt TM, DeBrosse JK, Gabric JA, Gow ET, Lamorey MC, Parenteau JS, Willmott DR, Wood MA, Gallagher WJ (2006) Design considerations for MRAM. IBM J Res Develop 50(1):25–49CrossRefGoogle Scholar
  68. 68.
    Jo K, Yoon H (2017) Variation-tolerant sensing circuit for ultralow-voltage operation of spin-torque transfer magnetic RAM. IEEE Trans Circuits Syst II: Exp Briefs 64(5):570–574CrossRefGoogle Scholar
  69. 69.
    Kang W, Pang T, Lv W, Zhao W. A dynamic dual-reference sensing scheme for deep submicrometer STT-MRAM. IEEE Trans Circuits Syst I: Reg Papers 64(1):122–132Google Scholar
  70. 70.
    Motaman S, Ghosh S, Kulkarni JP (2017) VFAB: A Novel 2-Stage STTRAM sensing using voltage feedback and boosting. IEEE Trans Circuits Syst I: Reg PapersGoogle Scholar
  71. 71.
    Javanifard J, Tanadi T, Giduturi H, Loe K, Melcher RL, Khabiri S, Hendrickson NT, Proescholdt AD, Ward DA, Taylor MA (2008) A 45 nm self-aligned-contact process 1 Gb NOR flash with 5 MB/s program speed. In: Proceeding of International Solid-State Circuits Conference, pp 424–426Google Scholar
  72. 72.
    Jefremow M, Kern T, Allers W, Peters C, Otterstedt J, Bahlous O, Hofmann K, Allinger R, Kassenetter S, Landsiedel DS (2013) Time-differential sense amplifier for sub-80 mV bitline voltage embedded STT-MRAM in 40 nm CMOS. In: Proceedings of International Solid-State Circuits Conference, pp 216–217Google Scholar
  73. 73.
    Song B, Na T, Kim J, Kim JP, Kang SH, Jung SO (2015) Latch offset cancellation sense amplifier for deep submicrometer STT-RAM. IEEE Trans. Circuits Syst. I: Reg. Papers 62(7):1776–1784Google Scholar
  74. 74.
    Na T, Kim J, Kim JP, Kang SH, Jung SO (2015) A double sensing-margin offset-canceling dual-stage sensing circuit for resistive nonvolatile memory. IEEE Trans Circuits Syst II: Exp Briefs 62(12):1109–1113CrossRefGoogle Scholar
  75. 75.
    Jeong G, Cho W, Ahn S, Jeong H, Koh G, Hwang Y, Kim K (2003) A 0.24-µm 2.0-V 1T1MTJ 16-kb nonvolatile magnetoresistance RAM with self-reference sensing scheme. IEEE J. Solid-State Circuits (JSSC) 38(11):1906–1910Google Scholar
  76. 76.
    Motaman S, Ghosh S, Kulkarni JP (2015) A novel slope detection technique for robust STTRAM sensing. In: IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp 7–12Google Scholar
  77. 77.
    Chen Y, Li H, Wang X, Zhu W, Xu W, Zhang T (2012) A 130 nm 1.2 V/3.3 V 16 Kb Spin-transfer torque random access memory with nondestructive self-reference sensing scheme. IEEE J Solid-State Circuits (JSSC) 47(2):560–573Google Scholar
  78. 78.
    Zeinali B, Madsen JK, Raghavan P, Moradi F. A novel nondestructive bit-line discharging scheme for deep submicrometer STT-RAM. IEEE Transactions on Emerging Topics in ComputingGoogle Scholar
  79. 79.
    Toifl T, Menolfi C, Buchmann P, Kossel M, Morf T, Schmatz ML (2009) A 1.25–5 GHz clock generator with high-bandwidth supply-rejection using a regulated-replica regulator in 45-nm CMOS. IEEE J Solid-State Circuits (JSSC) 44(11):2901–2910Google Scholar
  80. 80.
    Phyu MW, Fu K, Goh WL, Yeo KS (2011) Power-efficient explicit-pulsed dual-edge triggered sense-amplifier flip-flops. IEEE Trans Very Large Scale Integr (VLSI) Syst 19(1):1–9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aarhus UniversityAarhusDenmark

Personalised recommendations