Neuroimaging and the At-Risk Mental State

  • Yu-Shiuan Lin
  • Paolo Fusar-Poli
  • Stefan BorgwardtEmail author


The prodromal state of schizophrenia has excited the attention of researchers since the 1990s. The long-term course of schizophrenia increases the individual burden to caregivers and causes considerable financial costs to society. With early detection and intervention in schizophrenia, it might be possible to decrease the risk of irreversible deterioration after continual relapses.


  1. 1.
    Mayer-Gross W. Die Klinik der Schizophrenie. In: Bunke O, editor. Handbuch der Geisteskrankheiten. Berlin, Germany: Springer; 1932.Google Scholar
  2. 2.
    Huber G, Gross G. The concept of basic symptoms in schizophrenic and schizoaffective psychoses. Recenti Prog Med. 1989;80:646–52.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Häfner H, Maurer K, Loffler W, an der Heiden W, Munk-Jorgensen P, Hambrecht M, Riecher-Rossler A. The ABC schizophrenia study: a preliminary overview of the results. Soc Psychiatry Psychiatr Epidemiol. 1998;33:380–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Häfner H, Maurer K, Loffler W, Riecher-Rossler A. The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry. 1993;162:80–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Häfner H, Riecher-Rossler A, Hambrecht M, Maurer K, Meissner S, Schmidtke A, Fatkenheuer B, Loffler W, van der Heiden W. IRAOS: an instrument for the assessment of onset and early course of schizophrenia. Schizophr Res. 1992;6:209–23.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Häfner H, Riecher-Rossler A, Maurer K, Fatkenheuer B, Loffler W. First onset and early symptomatology of schizophrenia. A chapter of epidemiological and neurobiological research into age and sex differences. Eur Arch Psychiatry Clin Neurosci. 1992;242:109–18.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Riecher A, Maurer K, Loffler W, Fatkenheuer B, an der Heiden W, Häfner H. Schizophrenia--a disease of young single males? Preliminary results from an investigation on a representative cohort admitted to hospital for the first time. Eur Arch Psychiatry Neurol Sci. 1989;239:210–2.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rossler A, Schultze-Lutter F, Keshavan M, Wood S, Ruhrmann S, Seidman LJ, Valmaggia L, Cannon T, Velthorst E, de Haan L, Cornblatt B, Bonoldi I, Birchwood M, Mcglashan T, Carpenter W, Mcgorry P, Klosterkotter J, Mcguire P, Yung A. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry. 2013;70:107–20.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mcgorry PD, Yung AR, Phillips LJ. The “close-in” or ultra high-risk model: a safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophr Bull. 2003;29:771–90.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Yung AR, Mcgorry PD. The initial prodrome in psychosis: descriptive and qualitative aspects. Aust N Z J Psychiatry. 1996;30:587–99.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yung AR, Mcgorry PD. The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr Bull. 1996;22:353–70.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jackson HJ, Mcgorry PD, Mckenzie D. The reliability of DSM-III prodromal symptoms in first-episode psychotic patients. Acta Psychiatr Scand. 1994;90:375–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Miller TJ, Mcglashan TH, Rosen JL, Cadenhead K, Cannon T, Ventura J, Mcfarlane W, Perkins DO, Pearlson GD, Woods SW. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull. 2003;29:703–15.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Miller TJ, Mcglashan TH, Rosen JL, Somjee L, Markovich PJ, Stein K, Woods SW. Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for Prodromal Syndromes: preliminary evidence of interrater reliability and predictive validity. Am J Psychiatr. 2002;159:863–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Riecher-Rossler A, Aston J, Ventura J, Merlo M, Borgwardt S, Gschwandtner U, Stieglitz RD. The Basel Screening Instrument for Psychosis (BSIP): development, structure, reliability and validity. Fortschr Neurol Psychiatr. 2008;76:207–16.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fusar-Poli P, Cappucciati M, Rutigliano G, Schultze-Lutter F, Bonoldi I, Borgwardt S, Riecher-Rossler A, Addington J, Perkins D, Woods SW, Mcglashan TH, Lee J, Klosterkotter J, Yung AR, Mcguire P. At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction. World Psychiatry. 2015;14:322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nelson B, Yuen K, Yung AR. Ultra high risk (UHR) for psychosis criteria: are there different levels of risk for transition to psychosis? Schizophr Res. 2011;125:62–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fusar-Poli P, Cappucciati M, Borgwardt S, Woods SW, Addington J, Nelson B, Nieman DH, Stahl DR, Rutigliano G, Riecher-Rossler A, Simon AE, Mizuno M, Lee TY, Kwon JS, Lam MM, Perez J, Keri S, Amminger P, Metzler S, Kawohl W, Rossler W, Lee J, Labad J, Ziermans T, An SK, Liu CC, Woodberry KA, Braham A, Corcoran C, Mcgorry P, Yung AR, Mcguire PK. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA Psychiatry. 2016;73:113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hurlemann R, Jessen F, Wagner M, Frommann I, Ruhrmann S, Brockhaus A, Picker H, Scheef L, Block W, Schild HH, Moller-Hartmann W, Krug B, Falkai P, Klosterkotter J, Maier W. Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychol Med. 2008;38:843–51.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Takahashi T, Yung AR, Yucel M, Wood SJ, Phillips LJ, Harding IH, Soulsby B, Mcgorry PD, Suzuki M, Velakoulis D, Pantelis C. Prevalence of large cavum septi pellucidi in ultra high-risk individuals and patients with psychotic disorders. Schizophr Res. 2008;105:236–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Witthaus H, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y, Gallinat J, Ruhrmann S, Brune M, Heinz A, Klingebiel R, Juckel G. Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Res. 2009;173:163–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jung WH, Kim JS, Jang JH, Choi JS, Jung MH, Park JY, Han JY, Choi CH, Kang DH, Chung CK, Kwon JS. Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophr Bull. 2011;37:839–49.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bohner G, Milakara D, Witthaus H, Gallinat J, Scheel M, Juckel G, Klingebiel R. MTR abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Schizophr Res. 2012;137:85–90.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Iwashiro N, Suga M, Takano Y, Inoue H, Natsubori T, Satomura Y, Koike S, Yahata N, Murakami M, Katsura M, Gonoi W, Sasaki H, Takao H, Abe O, Kasai K, Yamasue H. Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia. Schizophr Res. 2012;137:124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Benetti S, Pettersson-Yeo W, Hutton C, Catani M, Williams SC, Allen P, Kambeitz-Ilankovic LM, Mcguire P, Mechelli A. Elucidating neuroanatomical alterations in the at risk mental state and first episode psychosis: a combined voxel-based morphometry and voxel-based cortical thickness study. Schizophr Res. 2013;150:505–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nakamura K, Takahashi T, Nemoto K, Furuichi A, Nishiyama S, Nakamura Y, Ikeda E, Kido M, Noguchi K, Seto H, Suzuki M. Gray matter changes in subjects at high risk for developing psychosis and first-episode schizophrenia: a voxel-based structural MRI study. Front Psychiatry. 2013;4:16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tepest R, Schwarzbach CJ, Krug B, Klosterkotter J, Ruhrmann S, Vogeley K. Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2013;263:15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pettersson-Yeo W, Benetti S, Frisciata S, Catani M, Williams SC, Allen P, Mcguire P, Mechelli A. Does neuroanatomy account for superior temporal dysfunction in early psychosis? A multimodal MRI investigation. J Psychiatry Neurosci. 2015;40:100–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Valli I, Crossley NA, Day F, Stone J, Tognin S, Mondelli V, Howes O, Valmaggia L, Pariante C, Mcguire P. HPA-axis function and grey matter volume reductions: imaging the diathesis-stress model in individuals at ultra-high risk of psychosis. Transl Psychiatry. 2016;6:e797.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dean DJ, Orr JM, Bernard JA, Gupta T, Pelletier-Baldelli A, Carol EE, Mittal VA. Hippocampal shape abnormalities predict symptom progression in neuroleptic-free youth at ultrahigh risk for psychosis. Schizophr Bull. 2016;42:161–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Reniers RL, LIN A, Yung AR, Koutsouleris N, Nelson B, Cropley VL, Velakoulis D, Mcgorry PD, Pantelis C, Wood SJ. Neuroanatomical predictors of functional outcome in individuals at ultra-high risk for psychosis. Schizophr Bull. 2017;43:449–58.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yucel M, Wood SJ, Phillips LJ, Stuart GW, Smith DJ, Yung A, Velakoulis D, Mcgorry PD, Pantelis C. Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. Br J Psychiatry. 2003;182:518–24.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Velakoulis D, Wood SJ, Wong MT, Mcgorry PD, Yung A, Phillips L, Smith D, Brewer W, Proffitt T, Desmond P, Pantelis C. Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry. 2006;63:139–49.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Walterfang M, Yung A, Wood AG, Reutens DC, Phillips L, Wood SJ, Chen J, Velakoulis D, Mcgorry PD, Pantelis C. Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophr Res. 2008;103:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Koutsouleris N, Schmitt GJ, Gaser C, Bottlender R, Scheuerecker J, Mcguire P, Burgermeister B, Born C, Reiser M, Moller HJ, Meisenzahl EM. Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes. Br J Psychiatry. 2009;195:218–26.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Smieskova R, Fusar-Poli P, Aston J, Simon A, Bendfeldt K, Lenz C, Stieglitz RD, Mcguire P, Riecher-Rossler A, Borgwardt SJ. Insular volume abnormalities associated with different transition probabilities to psychosis. Psychol Med. 2012;42:1613–25.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Phillips LJ, Velakoulis D, Pantelis C, Wood S, Yuen HP, Yung AR, Desmond P, Brewer W, Mcgorry PD. Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophr Res. 2002;58:145–58.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Garner B, Pariante CM, Wood SJ, Velakoulis D, Phillips L, Soulsby B, Brewer WJ, Smith DJ, Dazzan P, Berger GE, Yung AR, van den Buuse M, Murray R, Mcgorry PD, Pantelis C. Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biol Psychiatry. 2005;58:417–23.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Borgwardt SJ, Mcguire PK, Aston J, Berger G, Dazzan P, Gschwandtner U, Pfluger M, D’Souza M, Radue EW, Riecher-Rossler A. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry Suppl. 2007;51:s69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fornito A, Yung AR, Wood SJ, Phillips LJ, Nelson B, Cotton S, Velakoulis D, Mcgorry PD, Pantelis C, Yucel M. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol Psychiatry. 2008;64:758–65.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Witthaus H, Mendes U, Brune M, Ozgurdal S, Bohner G, Gudlowski Y, Kalus P, Andreasen N, Heinz A, Klingebiel R, Juckel G. Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia. J Psychiatry Neurosci. 2010;35:33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wood SJ, Kennedy D, Phillips LJ, Seal ML, Yucel M, Nelson B, Yung AR, Jackson G, Mcgorry PD, Velakoulis D, Pantelis C. Hippocampal pathology in individuals at ultra-high risk for psychosis: a multi-modal magnetic resonance study. NeuroImage. 2010;52:62–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mechelli A, Riecher-Rossler A, Meisenzahl EM, Tognin S, Wood SJ, Borgwardt SJ, Koutsouleris N, Yung AR, Stone JM, Phillips LJ, Mcgorry PD, Valli I, Velakoulis D, Woolley J, Pantelis C, Mcguire P. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry. 2011;68:489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Meijer JH, Schmitz N, Nieman DH, Becker HE, van Amelsvoort TA, Dingemans PM, Linszen DH, de Haan L. Semantic fluency deficits and reduced grey matter before transition to psychosis: a voxelwise correlational analysis. Psychiatry Res. 2011;194:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dazzan P, Soulsby B, Mechelli A, Wood SJ, Velakoulis D, Phillips LJ, Yung AR, Chitnis X, Lin A, Murray RM, Mcgorry PD, Mcguire PK, Pantelis C. Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophr Bull. 2012;38:1083–91.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tognin S, Riecher-Rossler A, Meisenzahl EM, Wood SJ, Hutton C, Borgwardt SJ, Koutsouleris N, Yung AR, Allen P, Phillips LJ, Mcgorry PD, Valli I, Velakoulis D, Nelson B, Woolley J, Pantelis C, Mcguire P, Mechelli A. Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis. Psychol Med. 2014;44:489–98.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pantelis C, Velakoulis D, Mcgorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, Mcguire PK. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361:281–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Borgwardt SJ, Mcguire PK, Aston J, Gschwandtner U, Pfluger MO, Stieglitz RD, Radue EW, Riecher-Rossler A. Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophr Res. 2008;106:108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sun D, Phillips L, Velakoulis D, Yung A, Mcgorry PD, Wood SJ, van Erp TG, Thompson PM, Toga AW, Cannon TD, Pantelis C. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr Res. 2009;108:85–92.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Takahashi T, Wood SJ, Yung AR, Phillips LJ, Soulsby B, Mcgorry PD, Tanino R, Zhou SY, Suzuki M, Velakoulis D, Pantelis C. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophr Res. 2009;111:94–102.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Walter A, Studerus E, Smieskova R, Kuster P, Aston J, Lang UE, Radue EW, Riecher-Rossler A, Borgwardt S. Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophr Res. 2012;142:217–22.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ziermans TB, Schothorst PF, Schnack HG, Koolschijn PC, Kahn RS, van Engeland H, Durston S. Progressive structural brain changes during development of psychosis. Schizophr Bull. 2012;38:519–30.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cannon TD. How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis. Trends Cogn Sci. 2015;19:744–56.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ashburner J, Friston KJ. Voxel-based morphometry--the methods. NeuroImage. 2000;11:805–21.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Iwashiro N, Koike S, Satomura Y, Suga M, Nagai T, Natsubori T, Tada M, Gonoi W, Takizawa R, Kunimatsu A, Yamasue H, Kasai K. Association between impaired brain activity and volume at the sub-region of Broca’s area in ultra-high risk and first-episode schizophrenia: a multi-modal neuroimaging study. Schizophr Res. 2016;172:9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J, Walker E, Seidman LJ, Perkins D, Tsuang M, Mcglashan T, Heinssen R. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry. 2008;65:28–37.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Peters BD, Karlsgodt KH. White matter development in the early stages of psychosis. Schizophr Res. 2015;161:61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58:461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yakovlev PL, Lecour AR. Regional development of the brain in early life. Oxford: Blackwell; 1967.Google Scholar
  60. 60.
    Asato MR, Terwilliger R, Woo J, Luna B. White matter development in adolescence: a DTI study. Cereb Cortex. 2010;20:2122–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Perrin JS, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T. Sex differences in the growth of white matter during adolescence. NeuroImage. 2009;45:1055–66.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.CrossRefGoogle Scholar
  63. 63.
    Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J. (Clin Res Ed.). 1987;295:681–2.CrossRefGoogle Scholar
  64. 64.
    Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35:528–48.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15:435–55.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ashburner J, Friston KJ. Why voxel-based morphometry should be used. NeuroImage. 2001;14:1238–43.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bookstein FL. “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage. 2001;14:1454–62.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage. 2004;23:17–20.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Friston KJ, Ashburner J. Generative and recognition models for neuroanatomy. NeuroImage. 2004;23:21–4.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC. Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage. 2002;17:592–617.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-MRI data. NeuroImage. 2005;26:546–54.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Park HJ, Westin CF, Kubicki M, Maier SE, Niznikiewicz M, Baer A, Frumin M, Kikinis R, Jolesz FA, Mccarley RW, Shenton ME. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. NeuroImage. 2004;23:213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–505.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Witthaus H, Brune M, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y, Heinz A, Klingebiel R, Juckel G. White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophr Res. 2008;102:141–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Epstein KA, Cullen KR, Mueller BA, Robinson P, Lee S, Kumra S. White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2014;53:362–72.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry. 2009;66:562–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Katagiri N, Pantelis C, Nemoto T, Zalesky A, Hori M, Shimoji K, Saito J, Ito S, Dwyer DB, Fukunaga I, Morita K, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an ‘at risk mental state’ (ARMS). Schizophr Res. 2015;162:7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rigucci S, Santi G, Corigliano V, Imola A, Rossi-Espagnet C, Mancinelli I, de Pisa E, Manfredi G, Bozzao A, Carducci F, Girardi P, Comparelli A. White matter microstructure in ultra-high risk and first episode schizophrenia: a prospective study. Psychiatry Res. 2016;247:42–8.CrossRefGoogle Scholar
  80. 80.
    Bloemen OJ, de Koning MB, Schmitz N, Nieman DH, Becker HE, de Haan L, Dingemans P, Linszen DH, van Amelsvoort TA. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med. 2010;40:1297–304.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cho KI, Shenton ME, Kubicki M, Jung WH, Lee TY, Yun JY, Kim SN, Kwon JS. Altered thalamo-cortical white matter connectivity: probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophr Bull. 2016;42:723–31.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RS, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MW, Zhou J. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol Med. 2016;46:2771–83.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mittal VA, Dean DJ, Bernard JA, ORR JM, Pelletier-Baldelli A, Carol EE, Gupta T, Turner J, Leopold DR, Robustelli BL, Millman ZB. Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull. 2014;40:1204–15.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bernard JA, Orr JM, Mittal VA. Abnormal hippocampal-thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis. NPJ Schizophr. 2015;1Google Scholar
  85. 85.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013;5:427–40.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp do PM, Zakszewski E, Field AS. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1:423–46.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    von Hohenberg CC, Pasternak O, Kubicki M, Ballinger T, Vu MA, Swisher T, Green K, Giwerc M, Dahlben B, Goldstein JM, Woo TU, Petryshen TL, Mesholam-Gately RI, Woodberry KA, Thermenos HW, Mulert C, Mccarley RW, Seidman LJ, Shenton ME. White matter microstructure in individuals at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophr Bull. 2014;40:895–903.CrossRefGoogle Scholar
  89. 89.
    Schmidt A, Lenz C, Smieskova R, Harrisberger F, Walter A, Riecher-Rossler A, Simon A, Lang UE, Mcguire P, Fusar-Poli P, Borgwardt SJ. Brain diffusion changes in emerging psychosis and the impact of state-dependent psychopathology. Neurosignals. 2015;23:71–83.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fox RJ, Beall E, Bhattacharyya P, Chen JT, Sakaie K. Advanced MRI in multiple sclerosis: current status and future challenges. Neurol Clin. 2011;29:357–80.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Carletti F, Woolley JB, Bhattacharyya S, Perez-Iglesias R, Fusar Poli P, Valmaggia L, Broome MR, Bramon E, Johns L, Giampietro V, Williams SC, Barker GJ, Mcguire PK. Alterations in white matter evident before the onset of psychosis. Schizophr Bull. 2012;38:1170–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Walterfang M, Mcguire PK, Yung AR, Phillips LJ, Velakoulis D, Wood SJ, Suckling J, Bullmore ET, Brewer W, Soulsby B, Desmond P, Mcgorry PD, Pantelis C. White matter volume changes in people who develop psychosis. Br J Psychiatry. 2008;193:210–5.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Peters BD, de Haan L, Dekker N, Blaas J, Becker HE, Dingemans PM, Akkerman EM, Majoie CB, van Amelsvoort T, den Heeten GJ, Linszen DH. White matter fibertracking in first-episode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology. 2008;58:19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Peters BD, Dingemans PM, Dekker N, Blaas J, Akkerman E, van Amelsvoort TA, Majoie CB, den Heeten GJ, Linszen DH, de Haan L. White matter connectivity and psychosis in ultra-high-risk subjects: a diffusion tensor fiber tracking study. Psychiatry Res. 2010;181:44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pukrop R, Ruhrmann S. Neurocognitive indicators of high-risk states for psychosis. In: Fusar Poli PB, Borgwardt SJ, Mcguire P, editors. Vulnerability to psychosis. Great Britain: Psychology Press on behalf of The Maudsley; 2012.Google Scholar
  96. 96.
    Fusar-Poli P, Stone JM, Broome MR, Valli I, Mechelli A, Mclean MA, Lythgoe DJ, O’Gorman RL, Barker GJ, Mcguire PK. Thalamic glutamate levels as a predictor of cortical response during executive functioning in subjects at high risk for psychosis. Arch Gen Psychiatry. 2011;68:881–90.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Allen P, Luigjes J, Howes OD, Egerton A, Hirao K, Valli I, Kambeitz J, Fusar-Poli P, Broome M, Mcguire P. Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophr Bull. 2012;38:1268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jung WH, Jang JH, Shin NY, Kim SN, Choi CH, An SK, Kwon JS. Regional brain atrophy and functional disconnection in Broca’s area in individuals at ultra-high risk for psychosis and schizophrenia. PLoS One. 2012;7:e51975.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Allen P, Stephan KE, Mechelli A, Day F, Ward N, Dalton J, Williams SC, Mcguire P. Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage. 2010;49:947–55.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Broome MR, Matthiasson P, Fusar-Poli P, Woolley JB, Johns LC, Tabraham P, Bramon E, Valmaggia L, Williams SC, Brammer MJ, Chitnis X, Mcguire PK. Neural correlates of executive function and working memory in the ‘at-risk mental state’. Br J Psychiatry. 2009;194:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fusar-Poli P, Broome MR, Woolley JB, Johns LC, Tabraham P, Bramon E, Valmaggia L, Williams SC, Mcguire P. Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: longitudinal VBM-fMRI study. J Psychiatr Res. 2011;45:190–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Smieskova R, Allen P, Simon A, Aston J, Bendfeldt K, Drewe J, Gruber K, Gschwandtner U, Klarhoefer M, Lenz C, Scheffler K, Stieglitz RD, Radue EW, Mcguire P, Riecher-Rossler A, Borgwardt SJ. Different duration of at-risk mental state associated with neurofunctional abnormalities. A multimodal imaging study. Hum Brain Mapp. 2012;33:2281–94.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Falkenberg I, Chaddock C, Murray RM, Mcdonald C, Modinos G, Bramon E, Walshe M, Broome M, Mcguire P, Allen P. Failure to deactivate medial prefrontal cortex in people at high risk for psychosis. Eur Psychiatry. 2015;30:633–40.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Crossley NA, Mechelli A, Fusar-Poli P, Broome MR, Matthiasson P, Johns LC, Bramon E, Valmaggia L, Williams SC, Mcguire PK. Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis. Hum Brain Mapp. 2009;30:4129–37.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Schmidt A, Smieskova R, Simon A, Allen P, Fusar-Poli P, Mcguire PK, Bendfeldt K, Aston J, Lang UE, Walter M, Radue EW, Riecher-Rossler A, Borgwardt SJ. Abnormal effective connectivity and psychopathological symptoms in the psychosis high-risk state. J Psychiatry Neurosci. 2014;39:239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Allen P, Seal ML, Valli I, Fusar-Poli P, Perlini C, Day F, Wood SJ, Williams SC, Mcguire PK. Altered prefrontal and hippocampal function during verbal encoding and recognition in people with prodromal symptoms of psychosis. Schizophr Bull. 2011;37:746–56.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Valli I, Stone J, Mechelli A, Bhattacharyya S, Raffin M, Allen P, Fusar-Poli P, Lythgoe D, O’Gorman R, Seal M, Mcguire P. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis. Biol Psychiatry. 2011;69:97–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, Mcguire P. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain. 2009;132:2426–36.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Falkenberg I, Valli I, Raffin M, Broome MR, Fusar-Poli P, Matthiasson P, Picchioni M, Mcguire P. Pattern of activation during delayed matching to sample task predicts functional outcome in people at ultra high risk for psychosis. Schizophr Res. 2016;181:86–93.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Fusar-Poli P, Broome MR, Matthiasson P, Woolley JB, Johns LC, Tabraham P, Bramon E, Valmaggia L, Williams SC, Mcguire P. Spatial working memory in individuals at high risk for psychosis: longitudinal fMRI study. Schizophr Res. 2010;123:45–52.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Choi JS, Park JY, Jung MH, Jang JH, Kang DH, Jung WH, Han JY, Choi CH, Hong KS, Kwon JS. Phase-specific brain change of spatial working memory processing in genetic and ultra-high risk groups of schizophrenia. Schizophr Bull. 2012;38:1189–99.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Broome MR, Matthiasson P, Fusar-Poli P, Woolley JB, Johns LC, Tabraham P, Bramon E, Valmaggia L, Williams SC, Brammer MJ, Chitnis X, Mcguire PK. Neural correlates of movement generation in the ‘at-risk mental state’. Acta Psychiatr Scand. 2010;122:295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Bernard JA, Dean DJ, Kent JS, Orr JM, Pelletier-Baldelli A, Lunsford-Avery JR, Gupta T, Mittal VA. Cerebellar networks in individuals at ultra high-risk of psychosis: impact on postural sway and symptom severity. Hum Brain Mapp. 2014;35:4064–78.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Seiferth NY, Pauly K, Habel U, Kellermann T, Shah NJ, Ruhrmann S, Klosterkotter J, Schneider F, Kircher T. Increased neural response related to neutral faces in individuals at risk for psychosis. NeuroImage. 2008;40:289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Modinos G, Tseng HH, Falkenberg I, Samson C, Mcguire P, Allen P. Neural correlates of aberrant emotional salience predict psychotic symptoms and global functioning in high-risk and first-episode psychosis. Soc Cogn Affect Neurosci. 2015;10:1429–36.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    van der Velde J, Opmeer EM, Liemburg EJ, Bruggeman R, Nieboer R, Wunderink L, Aleman A. Lower prefrontal activation during emotion regulation in subjects at ultrahigh risk for psychosis: an fMRI-study. NPJ Schizophr. 2015;1:15026.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Pelletier-Baldelli A, Bernard JA, Mittal VA. Intrinsic functional connectivity in salience and default mode networks and aberrant social processes in youth at ultra-high risk for psychosis. PLoS One. 2015;10:e0134936.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sabb FW, van Erp TG, Hardt ME, Dapretto M, Caplan R, Cannon TD, Bearden CE. Language network dysfunction as a predictor of outcome in youth at clinical high risk for psychosis. Schizophr Res. 2010;116:173–83.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Wotruba D, Heekeren K, Michels L, Buechler R, Simon JJ, Theodoridou A, Kollias S, Rossler W, Kaiser S. Symptom dimensions are associated with reward processing in unmedicated persons at risk for psychosis. Front Behav Neurosci. 2014;8:382.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rausch F, Mier D, Eifler S, Fenske S, Schirmbeck F, Englisch S, Schilling C, Meyer-Lindenberg A, Kirsch P, Zink M. Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state. J Psychiatry Neurosci. 2015;40:163–73.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Smieskova R, Roiser JP, Chaddock CA, Schmidt A, Harrisberger F, Bendfeldt K, Simon A, Walter A, Fusar-Poli P, Mcguire PK, Lang UE, Riecher-Rossler A, Borgwardt S. Modulation of motivational salience processing during the early stages of psychosis. Schizophr Res. 2015;166:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Shim G, Oh JS, Jung WH, Jang JH, Choi CH, Kim E, Park HY, Choi JS, Jung MH, Kwon JS. Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study. Behav Brain Funct. 2010;6:58.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Dandash O, Fornito A, Lee J, Keefe RS, Chee MW, Adcock RA, Pantelis C, Wood SJ, Harrison BJ. Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull. 2014;40:904–13.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wotruba D, Michels L, Buechler R, Metzler S, Theodoridou A, Gerstenberg M, Walitza S, Kollias S, Rossler W, Heekeren K. Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophr Bull. 2014;40:1095–104.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, Mcewen SC, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Olvet D, Mathalon DH, Mcglashan TH, Perkins DO, Belger A, Seidman LJ, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Qiu M, Cannon TD. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Yoon YB, Yun JY, Jung WH, Cho KI, Kim SN, Lee TY, Park HY, Kwon JS. Altered fronto-temporal functional connectivity in individuals at ultra-high-risk of developing psychosis. PLoS One. 2015;10:e0135347.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Heinze K, Reniers RL, Nelson B, Yung AR, Lin A, Harrison BJ, Pantelis C, Velakoulis D, Mcgorry PD, Wood SJ. Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biol Psychiatry. 2015;77:989–96.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Frommann I, Pukrop R, Brinkmeyer J, Bechdolf A, Ruhrmann S, Berning J, Decker P, Riedel M, Moller HJ, Wolwer W, Gaebel W, Klosterkotter J, Maier W, Wagner M. Neuropsychological profiles in different at-risk states of psychosis: executive control impairment in the early--and additional memory dysfunction in the late--prodromal state. Schizophr Bull. 2011;37:861–73.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Hawkins KA, Addington J, Keefe RS, Christensen B, Perkins DO, Zipurksy R, Woods SW, Miller TJ, Marquez E, Breier A, Mcglashan TH. Neuropsychological status of subjects at high risk for a first episode of psychosis. Schizophr Res. 2004;67:115–22.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Keefe RS, Perkins DO, Gu H, Zipursky RB, Christensen BK, Lieberman JA. A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophr Res. 2006;88:26–35.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Pukrop R, Schultze-Lutter F, Ruhrmann S, Brockhaus-Dumke A, Tendolkar I, Bechdolf A, Matuschek E, Klosterkotter J. Neurocognitive functioning in subjects at risk for a first episode of psychosis compared with first- and multiple-episode schizophrenia. J Clin Exp Neuropsychol. 2006;28:1388–407.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Simon AE, Cattapan-Ludewig K, Zmilacher S, Arbach D, Gruber K, Dvorsky DN, Roth B, Isler E, Zimmer A, Umbricht D. Cognitive functioning in the schizophrenia prodrome. Schizophr Bull. 2007;33:761–71.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Brewer WJ, Francey SM, Wood SJ, Jackson HJ, Pantelis C, Phillips LJ, Yung AR, Anderson VA, Mcgorry PD. Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am J Psychiatry. 2005;162:71–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Chung YS, Kang DH, Shin NY, Yoo SY, Kwon JS. Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. Schizophr Res. 2008;99:111–8.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Ozgurdal S, Littmann E, Hauser M, von Reventlow H, Gudlowski Y, Witthaus H, Heinz A, Juckel G. Neurocognitive performances in participants of at-risk mental state for schizophrenia and in first-episode patients. J Clin Exp Neuropsychol. 2009;31:392–401.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Parnas J, Vianin P, Saebye D, Jansson L, Volmer-Larsen A, Bovet P. Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiatr Scand. 2001;103:171–80.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Wood SJ, Pantelis C, Proffitt T, Phillips LJ, Stuart GW, Buchanan JA, Mahony K, Brewer W, Smith DJ, Mcgorry PD. Spatial working memory ability is a marker of risk-for-psychosis. Psychol Med. 2003;33:1239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Addington J, Penn D, Woods SW, Addington D, Perkins DO. Facial affect recognition in individuals at clinical high risk for psychosis. Br J Psychiatry. 2008;192:67–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Pinkham AE, Penn DL, Perkins DO, Graham KA, Siegel M. Emotion perception and social skill over the course of psychosis: a comparison of individuals “at-risk” for psychosis and individuals with early and chronic schizophrenia spectrum illness. Cogn Neuropsychiatry. 2007;12:198–212.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Garety PA, Hemsley DR, Wessely S. Reasoning in deluded schizophrenic and paranoid patients. Biases in performance on a probabilistic inference task. J Nerv Ment Dis. 1991;179:194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bentall RP, Kaney S, Dewey ME. Paranoia and social reasoning: an attribution theory analysis. Br J Clin Psychol. 1991;30(Pt 1):13–23.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Warman DM. Reasoning and delusion proneness: confidence in decisions. J Nerv Ment Dis. 2008;196:9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Woodward TS, Moritz S, Menon M, Klinge R. Belief inflexibility in schizophrenia. Cogn Neuropsychiatry. 2008;13:267–77.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci. 2009;10:48–58.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Blakemore SJ, Smith J, Steel R, Johnstone CE, Frith CD. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol Med. 2000;30:1131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Roiser JP, Stephan KE, den Ouden HE, Barnes TR, Friston KJ, Joyce EM. Do patients with schizophrenia exhibit aberrant salience? Psychol Med. 2009;39:199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23.CrossRefGoogle Scholar
  148. 148.
    Allen P, Amaro E, Fu CH, Williams SC, Brammer MJ, Johns LC, Mcguire PK. Neural correlates of the misattribution of speech in schizophrenia. Br J Psychiatry. 2007;190:162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Milstein DM, Dorris MC. The influence of expected value on saccadic preparation. J Neurosci. 2007;27:4810–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Wyvell CL, Berridge KC. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci. 2000;20:8122–30.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Moritz S, Woodward TS. Jumping to conclusions in delusional and non-delusional schizophrenic patients. Br J Clin Psychol. 2005;44:193–207.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ross RM, Mckay R, Coltheart M, Langdon R. Jumping to conclusions about the beads task? A meta-analysis of delusional ideation and data-gathering. Schizophr Bull. 2015;41:1183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Speechley WJ, Whitman JC, Woodward TS. The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia. J Psychiatry Neurosci. 2010;35:7–17.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–8.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Spreng RN. The fallacy of a “task-negative” network. Front Psychol. 2012;3:145.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, Mcnulty JP, Mullins PG. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage. 2014;99:180–90.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105:12569–74.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Guo W, Yao D, Jiang J, Su Q, Zhang Z, Zhang J, Yu L, Xiao C. Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;49:16–20.CrossRefGoogle Scholar
  160. 160.
    Pankow A, Deserno L, Walter M, Fydrich T, Bermpohl F, Schlagenhauf F, Heinz A. Reduced default mode network connectivity in schizophrenia patients. Schizophr Res. 2015;165:90–3.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Wang L, Zou F, Shao Y, Ye E, Jin X, Tan S, Hu D, Yang Z. Disruptive changes of cerebellar functional connectivity with the default mode network in schizophrenia. Schizophr Res. 2014;160:67–72.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Orliac F, Naveau M, Joliot M, Delcroix N, Razafimandimby A, Brazo P, Dollfus S, Delamillieure P. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophr Res. 2013;148:74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Manoliu A, Riedl V, Zherdin A, Muhlau M, Schwerthoffer D, Scherr M, Peters H, Zimmer C, Forstl H, Bauml J, Wohlschlager AM, Sorg C. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull. 2014;40:428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Wang X, Li F, Zheng H, Wang W, Zhang W, Liu Z, Sun Y, Chan RC, Chen A. Breakdown of the striatal-default mode network loop in schizophrenia. Schizophr Res. 2015;168:366–72.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Landin-Romero R, Mckenna PJ, Salgado-Pineda P, Sarro S, Aguirre C, Sarri C, Compte A, Bosque C, Blanch J, Salvador R, Pomarol-Clotet E. Failure of deactivation in the default mode network: a trait marker for schizophrenia? Psychol Med. 2015;45:1315–25.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8:49–76.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. (Copenh.). 1963;20:140–4.CrossRefGoogle Scholar
  168. 168.
    Howes O. Does dopamine start the psychotic “fire”? In: Fusar Poli P, Borgwardt S, Mcguire P, editors. Vulnerability to psychosis. London: Psychology Press; 2012.Google Scholar
  169. 169.
    Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, Kienast T, Bartenstein P, Grunder G. Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci. 2007;27:8080–7.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Mcgowan S, Lawrence AD, Sales T, Quested D, Grasby P. Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry. 2004;61:134–42.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, Bachneff S, Cumming P, Diksic M, Dyve SE, Etienne P, Evans AC, Lal S, Shevell M, Savard G, Wong DF, Chouinard G, Gjedde A. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A. 1994;91:11651–4.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Allen P, Chaddock CA, Howes OD, Egerton A, Seal ML, Fusar-Poli P, Valli I, Day F, Mcguire PK. Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull. 2012;38:1040–9.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, Mcguire PK, Howes OD. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry. 2013;74:106–12.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Roiser JP, Howes OD, Chaddock CA, Joyce EM, Mcguire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2013;39:1328–36.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ, O’Gorman RL, Mclean MA, Barker GJ, Mcguire P. Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry. 2010;68:599–602.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, Mcguire PK, Grasby PM. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Montgomery AJ, Grasby PM, Mcguire P. Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry. 2011;16:67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Suridjan I, Rusjan P, Addington J, Wilson AA, Houle S, Mizrahi R. Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J Psychiatry Neurosci. 2013;38:98–106.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, Murray RM, Mcguire P. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry. 2011;168:1311–7.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Bloemen OJ, de Koning MB, Gleich T, Meijer J, de Haan L, Linszen DH, Booij J, van Amelsvoort TA. Striatal dopamine D2/3 receptor binding following dopamine depletion in subjects at Ultra High Risk for psychosis. Eur Neuropsychopharmacol. 2013;23:126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    de Koning MB, Bloemen OJ, van Duin ED, Booij J, Abel KM, de Haan L, Linszen DH, van Amelsvoort TA. Pre-pulse inhibition and striatal dopamine in subjects at an ultra-high risk for psychosis. J Psychopharmacol. 2014;28:553–60.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–8.CrossRefGoogle Scholar
  184. 184.
    Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, van Heertum RL, Cooper TB, Carlsson A, Laruelle M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48:627–40.CrossRefGoogle Scholar
  185. 185.
    Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry. 2005;162:394–6.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98:427–36.CrossRefGoogle Scholar
  187. 187.
    Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience. 2003;117:697–706.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Dandash O, Harrison BJ, Adapa R, Gaillard R, Giorlando F, Wood SJ, Fletcher PC, Fornito A. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis. Neuropsychopharmacology. 2015;40:622–31.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Bergeron R, Coyle JT. NAAG, NMDA receptor and psychosis. Curr Med Chem. 2012;19(9):1360–4.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Stone J. Glutamate: gateway to psychosis? London: Psychology Press; 2012.Google Scholar
  191. 191.
    Allen P, Chaddock CA, Egerton A, Howes OD, Barker G, Bonoldi I, Fusar-Poli P, Murray R, Mcguire P. Functional outcome in people at high risk for psychosis predicted by thalamic glutamate levels and prefronto-striatal activation. Schizophr Bull. 2015;41:429–39.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Egerton A, Stone JM, Chaddock CA, Barker GJ, Bonoldi I, Howard RM, Merritt K, Allen P, Howes OD, Murray RM, Mclean MA, Lythgoe DJ, O’Gorman RL, Mcguire PK. Relationship between brain glutamate levels and clinical outcome in individuals at ultra high risk of psychosis. Neuropsychopharmacology. 2014;39:2891–9.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Stone JM, Day F, Tsagaraki H, Valli I, Mclean MA, Lythgoe DJ, O’Gorman RL, Barker GJ, Mcguire PK. Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry. 2009;66:533–9.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Wood SJ, Berger G, Velakoulis D, Phillips LJ, Mcgorry PD, Yung AR, Desmond P, Pantelis C. Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull. 2003;29:831–43.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    de la Fuente-Sandoval C, Leon-Ortiz P, Azcarraga M, Favila R, Stephano S, Graff-Guerrero A. Striatal glutamate and the conversion to psychosis: a prospective 1H-MRS imaging study. Int J Neuropsychopharmacol. 2013;16:471–5.Google Scholar
  196. 196.
    Nenadic I, Maitra R, Basu S, Dietzek M, Schonfeld N, Lorenz C, Gussew A, Amminger GP, Mcgorry P, Reichenbach JR, Sauer H, Gaser C, Smesny S. Associations of hippocampal metabolism and regional brain grey matter in neuroleptic-naive ultra-high-risk subjects and first-episode schizophrenia. Eur Neuropsychopharmacol. 2015;25:1661–8.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    de la Fuente-Sandoval C, Reyes-Madrigal F, Mao X, Leon-Ortiz P, Rodriguez-Mayoral O, Solis-Vivanco R, Favila R, Graff-Guerrero A, Shungu DC. Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy. Int J Neuropsychopharmacol. 2015;19:pyv105.Google Scholar
  198. 198.
    de la Fuente-Sandoval C, Leon-Ortiz P, Favila R, Stephano S, Mamo D, Ramirez-Bermudez J, Graff-Guerrero A. Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology. 2011;36:1781–91.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Liemburg E, Sibeijn-Kuiper A, Bais L, Pijnenborg G, Knegtering H, van der Velde J, Opmeer E, de Vos A, Dlabac-De Lange J, Wunderink L, Aleman A. Prefrontal NAA and Glx levels in different stages of psychotic disorders: a 3T 1H-MRS study. Sci Rep. 2016;6:21873.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Natsubori T, Inoue H, Abe O, Takano Y, Iwashiro N, Aoki Y, Koike S, Yahata N, Katsura M, Gonoi W, Sasaki H, Takao H, Kasai K, Yamasue H. Reduced frontal glutamate + glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia. Schizophr Bull. 2014;40:1128–39.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Haijma SV, van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39:1129–38.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Kempton MJ, Mcguire P. How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis? Eur Neuropsychopharmacol. 2015;25:725–32.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    PSYSCAN. Translating neuroimaging findings from research into clinical practice.
  204. 204.
    van Os J, Rutten BP, Myin-Germeys I, Delespaul P, Viechtbauer W, van Zelst C, Bruggeman R, Reininghaus U, Morgan C, Murray RM, Di Forti M, Mcguire P, Valmaggia LR, Kempton MJ, Gayer-Anderson C, Hubbard K, Beards S, Stilo SA, Onyejiaka A, Bourque F, Modinos G, Tognin S, Calem M, O’Donovan MC, Owen MJ, Holmans P, Williams N, Craddock N, Richards A, Humphreys I, Meyer-Lindenberg A, Leweke FM, Tost H, Akdeniz C, Rohleder C, Bumb JM, Schwarz E, Alptekin K, Ucok A, Saka MC, Atbasoglu EC, Guloksuz S, Gumus-Akay G, Cihan B, Karadag H, Soygur H, Cankurtaran ES, Ulusoy S, Akdede B, Binbay T, Ayer A, Noyan H, Karadayi G, Akturan E, Ulas H, Arango C, Parellada M, Bernardo M, Sanjuan J, Bobes J, Arrojo M, Santos JL, Cuadrado P, Rodriguez Solano JJ, Carracedo A, Garcia Bernardo E, Roldan L, Lopez G, Cabrera B, Cruz S, Diaz Mesa EM, Pouso M, Jimenez E, Sanchez T, Rapado M, Gonzalez E, Martinez C, Sanchez E, Olmeda MS, de Haan L, Velthorst E, van der Gaag M, Selten JP, van Dam D, van der Ven E, van der Meer F, Messchaert E, Kraan T, Burger N, Leboyer M, Szoke A, Schurhoff F, Llorca PM, Jamain S, Tortelli A, Frijda F, Vilain J, Galliot AM, Baudin G, Ferchiou A, et al. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull. 2014;40:729–36.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34:1066–82.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Addington J, Cadenhead KS, Cannon TD, Cornblatt B, Mcglashan TH, Perkins DO, Seidman LJ, Tsuang M, Walker EF, Woods SW, Heinssen R. North American Prodrome Longitudinal Study: a collaborative multisite approach to prodromal schizophrenia research. Schizophr Bull. 2007;33:665–72.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Addington J, Liu L, Buchy L, Cadenhead KS, Cannon TD, Cornblatt BA, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Bearden CE, Mathalon DH, Mcglashan TH. North American Prodrome Longitudinal Study (NAPLS 2): the prodromal symptoms. J Nerv Ment Dis. 2015;203:328–35.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Broome M, Dale J, Marriott C, Bortolotti L. Neuroscience, continua and the prodromal phase of psychosis. In: Fusar Poli PB, Borgwardt SJ, Mcguire P, editors. Vulnerability to psychosis. London: Psychology Press; 2012.Google Scholar
  209. 209.
    Goldman A. What is justified belief? In: Pappas G, editor. Justification and knowledge. Dordrecht: D. Reidel; 1979.Google Scholar
  210. 210.
    Morgan C, Dazzan P, Morgan K, Jones P, Harrison G, Leff J, Murray R, Fearon P. First episode psychosis and ethnicity: initial findings from the AESOP study. World Psychiatry. 2006;5:40–6.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Revier CJ, Reininghaus U, Dutta R, Fearon P, Murray RM, Doody GA, Croudace T, Dazzan P, Heslin M, Onyejiaka A, Kravariti E, Lappin J, Lomas B, Kirkbride JB, Donoghue K, Morgan C, Jones PB. Ten-year outcomes of first-episode psychoses in the MRC AESOP-10 study. J Nerv Ment Dis. 2015;203:379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Fusar-Poli P, Cappucciati M, Bonoldi I, Hui LM, Rutigliano G, Stahl DR, Borgwardt S, Politi P, Mishara AL, Lawrie SM, Carpenter WT Jr, Mcguire PK. Prognosis of brief psychotic episodes: a meta-analysis. JAMA Psychiatry. 2016;73:211–20.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yu-Shiuan Lin
    • 1
  • Paolo Fusar-Poli
    • 2
    • 3
  • Stefan Borgwardt
    • 1
    Email author
  1. 1.Department of Psychiatry (UPK)University of BaselBaselSwitzerland
  2. 2.Early Psychosis Interventions and Clinical Detection (EPIC) Lab, Department of Psychosis StudiesInstitute of Psychiatry Psychology and Neuroscience (IoPPN), King’s College LondonLondonUK
  3. 3.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly

Personalised recommendations