Advertisement

Individualizing Drug Therapy

  • Ricardo Palmerola
  • Victor Nitti
Chapter

Abstract

Pharmacotherapy for overactive bladder (OAB) has been a mainstay of treatment for many years. Several oral medications are available including anticholinergic drugs and β3-agonists (mirabegron). Both classes of medications are effective in controlling the symptoms associated with OAB; however, they may produce side effects that may limit successful therapy. Successful therapy is dependent upon patient’s compliance, and thus individualizing drug therapy to maximize compliance will, in turn, result in successful treatment. Pharmacotherapy for OAB not only requires an understanding of the pharmacological properties of drugs, it also requires physicians and patients to have a candid discussion about treatment expectations in addition to counseling on drug side effects. Furthermore, patient comorbidities and age should be taken into consideration, as treatment should not create a hazardous situation for patients.

Keywords

Overactive bladder Anticholinergic therapy Mirabegron Medication compliance Medication persistence Blood-brain barrier Urinary incontinence Dry mouth Constipation CYP3A4 

References

  1. 1.
    Gormley EA, Lightner DJ, Faraday M, Vasavada SP. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline amendment. J Urol. 2015;193(5):1572–80.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D. The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur Urol. 2008;54(3):543–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Maman K, Aballea S, Nazir J, Desroziers K, Neine ME, Siddiqui E, et al. Comparative efficacy and safety of medical treatments for the management of overactive bladder: a systematic literature review and mixed treatment comparison. Eur Urol. 2014;65(4):755–65.CrossRefGoogle Scholar
  4. 4.
    Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148(5):565–78.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Basra RK, Wagg A, Chapple C, Cardozo L, Castro-Diaz D, Pons ME, et al. A review of adherence to drug therapy in patients with overactive bladder. BJU Int. 2008;102(7):774–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Wagg A, Compion G, Fahey A, Siddiqui E. Persistence with prescribed antimuscarinic therapy for overactive bladder: a UK experience. BJU Int. 2012;110(11):1767–74.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Benner JS, Nichol MB, Rovner ES, Jumadilova Z, Alvir J, Hussein M, et al. Patient-reported reasons for discontinuing overactive bladder medication. BJU Int. 2010;105(9):1276–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Chancellor MB, Migliaccio-Walle K, Bramley TJ, Chaudhari SL, Corbell C, Globe D. Long-term patterns of use and treatment failure with anticholinergic agents for overactive bladder. Clin Ther. 2013;35(11):1744–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Yeaw J, Benner JS, Walt JG, Sian S, Smith DB. Comparing adherence and persistence across 6 chronic medication classes. J Manag Care Pharm. 2009;15(9):728–40.PubMedGoogle Scholar
  10. 10.
    Chapple CR, Rosenberg MT, Brenes FJ. Listening to the patient: a flexible approach to the use of antimuscarinic agents in overactive bladder syndrome. BJU Int. 2009;104(7):960–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Cardozo L, Hessdorfer E, Milani R, Arano P, Dewilde L, Slack M, et al. Solifenacin in the treatment of urgency and other symptoms of overactive bladder: results from a randomized, double-blind, placebo-controlled, rising-dose trial. BJU Int. 2008;102(9):1120–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Staskin D, Khullar V, Michel MC, Morrow JD, Sun F, Guan Z, et al. Effects of voluntary dose escalation in a placebo-controlled, flexible-dose trial of fesoterodine in subjects with overactive bladder. Neurourol Urodyn. 2011;30(8):1480–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Wyndaele JJ, Goldfischer ER, Morrow JD, Gong J, Tseng LJ, Guan Z, et al. Effects of flexible-dose fesoterodine on overactive bladder symptoms and treatment satisfaction: an open-label study. Int J Clin Pract. 2009;63(4):560–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cardozo L, Amarenco G, Pushkar D, Mikulas J, Drogendijk T, Wright M, et al. Severity of overactive bladder symptoms and response to dose escalation in a randomized, double-blind trial of solifenacin (SUNRISE). BJU Int. 2013;111(5):804–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Kennelly MJ. A comparative review of oxybutynin chloride formulations: pharmacokinetics and therapeutic efficacy in overactive bladder. Rev Urol. 2010;12(1):12–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Katz IR, Sands LP, Bilker W, DiFilippo S, Boyce A, D’Angelo K. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J Am Geriatr Soc. 1998;46(1):8–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Kay G, Crook T, Rekeda L, Lima R, Ebinger U, Arguinzoniz M, et al. Differential effects of the antimuscarinic agents darifenacin and oxybutynin ER on memory in older subjects. Eur Urol. 2006;50(2):317–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Klausner AP, Steers WD. Antimuscarinics for the treatment of overactive bladder: a review of central nervous system effects. Curr Urol Rep. 2007;8(6):441–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Noronha-Blob L, Kachur JF. Enantiomers of oxybutynin: in vitro pharmacological characterization at M1, M2 and M3 muscarinic receptors and in vivo effects on urinary bladder contraction, mydriasis and salivary secretion in Guinea pigs. J Pharmacol Exp Ther. 1991;256(2):562–7.PubMedGoogle Scholar
  20. 20.
    Ditropan XL® (oxybutynin chloride) (package insert). Raritan: Ortho-McNeil-Janssen Pharmaceuticals; 2009.Google Scholar
  21. 21.
    Ditropan® (oxybutynin chloride) (package insert). Raritan: Ortho-McNeil Pharmaceuticals; Feb 2008.Google Scholar
  22. 22.
    Cohn JA, Brown ET, Reynolds WS, Kaufman MR, Milam DF, Dmochowski RR. An update on the use of transdermal oxybutynin in the management of overactive bladder disorder. Ther Adv Urol. 2016;8(2):83–90.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Davila GW, Starkman JS, Dmochowski RR. Transdermal oxybutynin for overactive bladder. Urol Clin North Am. 2006;33(4):455–63, viii.PubMedCrossRefGoogle Scholar
  24. 24.
    Davila GW, Daugherty CA, Sanders SW, Transdermal Oxybutynin Study G. A short-term, multicenter, randomized double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol. 2001;166(1):140–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Nitti VW, Sanders S, Staskin DR, Dmochowski RR, Sand PK, MacDiarmid S, et al. Transdermal delivery of drugs for urologic applications: basic principles and applications. Urology. 2006;67(4):657–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Dmochowski RR, Nitti V, Staskin D, Luber K, Appell R, Davila GW. Transdermal oxybutynin in the treatment of adults with overactive bladder: combined results of two randomized clinical trials. World J Urol. 2005;23(4):263–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Sand P, Zinner N, Newman D, Lucente V, Dmochowski R, Kelleher C, et al. Oxybutynin transdermal system improves the quality of life in adults with overactive bladder: a multicentre, community-based, randomized study. BJU Int. 2007;99(4):836–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaguchi O, Uchida E, Higo N, Minami H, Kobayashi S, Sato H, et al. Efficacy and safety of once-daily oxybutynin patch versus placebo and propiverine in Japanese patients with overactive bladder: a randomized double-blind trial. Int J Urol. 2014;21(6):586–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Doroshyenko O, Fuhr U. Clinical pharmacokinetics and pharmacodynamics of solifenacin. Clin Pharmacokinet. 2009;48(5):281–302.PubMedCrossRefGoogle Scholar
  30. 30.
    VESIcare® (solifenacin succinate) tablets. (packet insert). Northbrook: Astellas Pharma US; Feb 2016.Google Scholar
  31. 31.
    Abrams P, Andersson KE. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100(5):987–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cardozo L, Lisec M, Millard R, van Vierssen Trip O, Kuzmin I, Drogendijk TE, et al. Randomized, double-blind placebo controlled trial of the once daily antimuscarinic agent solifenacin succinate in patients with overactive bladder. J Urol. 2004;172(5 Pt 1):1919–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Haab F, Cardozo L, Chapple C, Ridder AM, Solifenacin Study G. Long-term open-label solifenacin treatment associated with persistence with therapy in patients with overactive bladder syndrome. Eur Urol. 2005;47(3):376–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Detrol® (tolterodine tartrate) (package insert). Kalamazoo: Pharmacia & Upjohn; 2004.Google Scholar
  35. 35.
    Nilvebrant L, Gillberg PG, Sparf B. Antimuscarinic potency and bladder selectivity of PNU-200577, a major metabolite of tolterodine. Pharmacol Toxicol. 1997;81(4):169–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Appell RA, Sand P, Dmochowski R, Anderson R, Zinner N, Lama D, et al. Prospective randomized controlled trial of extended-release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: results of the OBJECT study. Mayo Clin Proc. 2001;76(4):358–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Clemett D, Jarvis B. Tolterodine: a review of its use in the treatment of overactive bladder. Drugs Aging. 2001;18(4):277–304.PubMedCrossRefGoogle Scholar
  39. 39.
    Malhotra B, Guan Z, Wood N, Gandelman K. Pharmacokinetic profile of fesoterodine. Int J Clin Pharmacol Ther. 2008;46(11):556–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Toviaz® (fesoterodine fumarate) (package insert). New York: Pfizer Inc.; 2014.Google Scholar
  41. 41.
    Leone Roberti Maggiore U, Salvatore S, Alessandri F, Remorgida V, Origoni M, Candiani M, et al. Pharmacokinetics and toxicity of antimuscarinic drugs for overactive bladder treatment in females. Expert Opin Drug Metab Toxicol. 2012;8(11):1387–408.PubMedCrossRefGoogle Scholar
  42. 42.
    Nitti VW, Dmochowski R, Sand PK, Forst HT, Haag-Molkenteller C, Massow U, et al. Efficacy, safety and tolerability of fesoterodine for overactive bladder syndrome. The J Urol. 2007;178(6):2488–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Herschorn S, Swift S, Guan Z, Carlsson M, Morrow JD, Brodsky M, et al. Comparison of fesoterodine and tolterodine extended release for the treatment of overactive bladder: a head-to-head placebo-controlled trial. BJU Int. 2010;105(1):58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rovner ES. Trospium chloride in the management of overactive bladder. Drugs. 2004;64(21):2433–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Tadken T, Weiss M, Modess C, Wegner D, Roustom T, Neumeister C, et al. Trospium chloride is absorbed from two intestinal “absorption windows” with different permeability in healthy subjects. Int J Pharm. 2016;515(1–2):367–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Sanctura® (trospium chloride) 20mg tablets (package insert). Irvine: Allergan; 2004.Google Scholar
  47. 47.
    Kim Y, Yoshimura N, Masuda H, De Miguel F, Chancellor MB. Intravesical instillation of human urine after oral administration of trospium, tolterodine and oxybutynin in a rat model of detrusor overactivity. BJU Int. 2006;97(2):400–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Zinner N, Gittelman M, Harris R, Susset J, Kanelos A, Auerbach S, et al. Trospium chloride improves overactive bladder symptoms: a multicenter phase III trial. J Urol. 2004;171(6 Pt 1):2311–5. quiz 435PubMedCrossRefGoogle Scholar
  49. 49.
    Andersson KE. Potential benefits of muscarinic M3 receptor selectivity. Eur Urol Suppl. 2002;1(4):23.CrossRefGoogle Scholar
  50. 50.
    Skerjanec A. The clinical pharmacokinetics of darifenacin. Clin Pharmacokinet. 2006;45(4):325–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Zinner N. Darifenacin: a muscarinic M3-selective receptor antagonist for the treatment of overactive bladder. Expert Opin Pharmacother. 2007;8(4):511–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Zinner N, Tuttle J, Marks L. Efficacy and tolerability of darifenacin, a muscarinic M3 selective receptor antagonist (M3 SRA), compared with oxybutynin in the treatment of patients with overactive bladder. World J Urol. 2005;23(4):248–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Chapple C, Steers W, Norton P, Millard R, Kralidis G, Glavind K, et al. A pooled analysis of three phase III studies to investigate the efficacy, tolerability and safety of darifenacin, a muscarinic M3 selective receptor antagonist, in the treatment of overactive bladder. BJU Int. 2005;95(7):993–1001.PubMedCrossRefGoogle Scholar
  54. 54.
    Chapple CR, Cardozo L, Nitti VW, Siddiqui E, Michel MC. Mirabegron in overactive bladder: a review of efficacy, safety, and tolerability. Neurourol Urodyn. 2014;33(1):17–30.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Leone Roberti Maggiore U, Cardozo L, Ferrero S, Sileo F, Cola A, Del Deo F, et al. Mirabegron in the treatment of overactive bladder. Expert Opin Pharmacother. 2014;15(6):873–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Dickinson J, Lewand M, Sawamoto T, Krauwinkel W, Schaddelee M, Keirns J, et al. Effect of renal or hepatic impairment on the pharmacokinetics of mirabegron. Clin Drug Investig. 2013;33(1):11–23.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nitti VW, Auerbach S, Martin N, Calhoun A, Lee M, Herschorn S. Results of a randomized phase III trial of mirabegron in patients with overactive bladder. J Urol. 2013;189(4):1388–95.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gillespie JI, Palea S, Guilloteau V, Guerard M, Lluel P, Korstanje C. Modulation of non-voiding activity by the muscarinergic antagonist tolterodine and the beta(3)-adrenoceptor agonist mirabegron in conscious rats with partial outflow obstruction. BJU Int. 2012;110(2 Pt 2):E132–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Caremel R, Loutochin O, Corcos J. What do we know and not know about mirabegron, a novel beta3 agonist, in the treatment of overactive bladder? Int Urogynecol J. 2014;25(2):165–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Brubaker L, Fanning K, Goldberg EL, Benner JS, Trocio JN, Bavendam T, et al. Predictors of discontinuing overactive bladder medications. BJU Int. 2010;105(9):1283–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Veenboer PW, Bosch JL. Long-term adherence to antimuscarinic therapy in everyday practice: a systematic review. J Urol. 2014;191(4):1003–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Chapple CR, Nazir J, Hakimi Z, Bowditch S, Fatoye F, Guelfucci F, et al. Persistence and adherence with mirabegron versus antimuscarinic agents in patients with overactive bladder: a retrospective observational study in UK clinical practice. Eur Urol. 2017;72(3):389–99.PubMedCrossRefGoogle Scholar
  63. 63.
    Moskowitz D, Adelstein SA, Lucioni A, Lee UJ, Kobashi KC. Use of third line therapy for overactive bladder in a practice with multiple subspecialty providers: are we doing enough? J Urol. 2018;199(3):779–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Marschall-Kehrel D, Roberts RG, Brubaker L. Patient-reported outcomes in overactive bladder: the influence of perception of condition and expectation for treatment benefit. Urology. 2006;68(2 Suppl):29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Khullar V, Chapple C, Gabriel Z, Dooley JA. The effects of antimuscarinics on health-related quality of life in overactive bladder: a systematic review and meta-analysis. Urology. 2006;68(2 Suppl):38–48.PubMedCrossRefGoogle Scholar
  66. 66.
    Schabert VF, Bavendam T, Goldberg EL, Trocio JN, Brubaker L. Challenges for managing overactive bladder and guidance for patient support. Am J Manag Care. 2009;15(4 Suppl):S118–22.PubMedGoogle Scholar
  67. 67.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wagg A, Arumi D, Herschorn S, Angulo Cuesta J, Haab F, Ntanios F, et al. A pooled analysis of the efficacy of fesoterodine for the treatment of overactive bladder, and the relationship between safety, co-morbidity and polypharmacy in patients aged 65 years or older. Age Ageing. 2017;46(4):620–6.PubMedGoogle Scholar
  69. 69.
    Dubeau CE, Kraus SR, Griebling TL, Newman DK, Wyman JF, Johnson TM 2nd, et al. Effect of fesoterodine in vulnerable elderly subjects with urgency incontinence: a double-blind, placebo controlled trial. J Urol. 2014;191(2):395–404.PubMedCrossRefGoogle Scholar
  70. 70.
    Lackner TE, Wyman JF, McCarthy TC, Monigold M, Davey C. Randomized, placebo-controlled trial of the cognitive effect, safety, and tolerability of oral extended-release oxybutynin in cognitively impaired nursing home residents with urge urinary incontinence. J Am Geriatr Soc. 2008;56(5):862–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res. 2004;145:59–66.PubMedCrossRefGoogle Scholar
  72. 72.
    Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003;6(1):51–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Chancellor MB, Staskin DR, Kay GG, Sandage BW, Oefelein MG, Tsao JW. Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder. Drugs Aging. 2012;29(4):259–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Wagg A, Nitti VW, Kelleher C, Castro-Diaz D, Siddiqui E, Berner T. Oral pharmacotherapy for overactive bladder in older patients: mirabegron as a potential alternative to antimuscarinics. Curr Med Res Opin. 2016;32(4):621–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Tani M, Hirayama A, Fujimoto K, Torimoto K, Akiyama T, Hirao Y. Increase in 24-hour urine production/weight causes nocturnal polyuria due to impaired function of antidiuretic hormone in elderly men. Int J Urol. 2008;15(2):151–4. discussion 5PubMedCrossRefGoogle Scholar
  76. 76.
    Kerdraon J, Robain G, Jeandel C, Mongiat Artus P, Game X, Fatton B, et al. Impact on cognitive function of anticholinergic drugs used for the treatment of overactive bladder in the elderly. Prog Urol. 2014;24(11):672–81.PubMedCrossRefGoogle Scholar
  77. 77.
    McGhan WF. Cost effectiveness and quality of life considerations in the treatment of patients with overactive bladder. Am J Manag Care. 2001;7(2 Suppl):S62–75.PubMedGoogle Scholar
  78. 78.
    Millsop JW, Wang EA, Fazel N. Etiology, evaluation, and management of xerostomia. Clin Dermatol. 2017;35(5):468–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Wagg A, Nitti V, Kelleher C, Auberbach S, Blauwet MB, Siddiqui E. Effects of the beta-3-adrenoceptor agonist, mirabegron, on quality of life in older patients with overactive bladder: a post-hoc analysis of pooled data from 3 randomised phase 3 trials (abstract). J Urol. 2014;191(4 Suppl):e339.CrossRefGoogle Scholar
  80. 80.
    Wagg A, Franks B, Ramos B, Berner T. Persistence and adherence with the new beta-3 receptor agonist, mirabegron, versus antimuscarinics in overactive bladder: early experience in Canada. Can Urol Assoc J. 2015;9(9–10):343–50.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nitti VW, Rovner ES, Franks B, Muma GN, Berner T, Fan A, Ng DB. Persistence with mirabegron versus tolterodine in patients with overactive bladder. Am J Pharm Benefits. 2016;8(2):e25–33.Google Scholar
  82. 82.
    Wielage RC, Perk S, Campbell NL, Klein TM, Posta LM, Yuran T, et al. Mirabegron for the treatment of overactive bladder: cost-effectiveness from US commercial health-plan and medicare advantage perspectives. J Med Econ. 2016;19(12):1135–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Herschorn S, Nazir J, Ramos B, Hakimi Z. Cost-effectiveness of mirabegron compared to tolterodine ER 4 mg for overactive bladder in Canada. Can Urol Assoc J. 2017;11(3–4):123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nazir J, Maman K, Neine ME, Briquet B, Odeyemi IA, Hakimi Z, et al. Cost-effectiveness of mirabegron compared with antimuscarinic agents for the treatment of adults with overactive bladder in the United Kingdom. Value Health. 2015;18(6):783–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Schaefer DC, Cheskin LJ. Constipation in the elderly. Am Fam Physician. 1998;58(4):907–14.PubMedGoogle Scholar
  86. 86.
    Klutke CG, Burgio KL, Wyman JF, Guan Z, Sun F, Berriman S, et al. Combined effects of behavioral intervention and tolterodine in patients dissatisfied with overactive bladder medication. J Urol. 2009;181(6):2599–607.PubMedCrossRefGoogle Scholar
  87. 87.
    Visco AG, Fraser MO, Newgreen D, Oelke M, Cardozo L. What is the role of combination drug therapy in the treatment of overactive bladder? ICI-RS 2014. Neurourol Urodyn. 2016;35(2):288–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Herschorn S, Chapple CR, Abrams P, Arlandis S, Mitcheson D, Lee KS, et al. Efficacy and safety of combinations of mirabegron and solifenacin compared with monotherapy and placebo in patients with overactive bladder (SYNERGY study). BJU Int. 2017;120(4):562–75.PubMedCrossRefGoogle Scholar
  89. 89.
    Robinson D, Kelleher C, Staskin D, Mueller ER, Falconer C, Wang J, et al. Patient-reported outcomes from SYNERGY, a randomized, double-blind, multicenter study evaluating combinations of mirabegron and solifenacin compared with monotherapy and placebo in OAB patients. Neurourol Urodyn. 2018;37(1):394–406.PubMedCrossRefGoogle Scholar
  90. 90.
    Drake MJ, Nitti VW, Ginsberg DA, Brucker BM, Hepp Z, McCool R, et al. Comparative assessment of the efficacy of onabotulinumtoxinA and oral therapies (anticholinergics and mirabegron) for overactive bladder: a systematic review and network meta-analysis. BJU Int. 2017;120(5):611–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ricardo Palmerola
    • 1
  • Victor Nitti
    • 1
  1. 1.Female Pelvic Medicine and Reconstructive Surgery Program, NYU Langone, Department of UrologyNew York UniversityNew YorkUSA

Personalised recommendations