Sans-Papiers as First-Class Citizens

  • Julian RohrhuberEmail author
Part of the Philosophical Studies Series book series (PSSP, volume 133)


Each formalism implies a specific distinction between objects and the system of their combination. Thereby, the concept of function has a peculiar role: it governs how objects interact, and is also an object of computation. Over more than a century, this intermediary status has broached the problem of how exactly a formalism should admit functions as first-class citizens. In this text, I demonstrate how traces of this problem can be found across disciplinary boundaries, from the early foundational crisis to the advent of contemporary programming languages. As it turns out, the problem carries with it a shift in the understanding of the unsaturated function argument: while originally conceived of as a mere placeholder that awaits a guaranteed fulfilment, it is given the status of an object without guaranteed properties, sans-papier. This citizenship of sans-papiers is not without an impact on the laws of their mutual combination, however. Through a number of examples, I touch upon a number of philosophical, political, and technological implications and discuss what practical consequences this problem has for logic and computing.


Anonymous function Foundations of mathematics Object oriented programming Interactive programming History of programming 


  1. Backus, J. 1978. Can programming be liberated from the von neumann style? A functional style and its algebra of programs. Communications of the ACM 21(8): 613–641.CrossRefGoogle Scholar
  2. Badiou, A. 2007. Being and event. London: Continuum International Publishing Group.Google Scholar
  3. Bowker, G.C., and S.L. Star. 2001. Pure, real and rational numbers: The American imaginary of countability. Social Studies of Science 3(31): 422–425.CrossRefGoogle Scholar
  4. Bullynck, M. 2018. What is an operating system? A historical investigation (1954–1964). In Reflections on programming systems: Historical and philosophical aspects, ed. Liesbeth de Mol. Cham: Springer.Google Scholar
  5. Cardone, F., and J.R. Hindley. 2006. History of lambda-calculus and combinatory logic. Research report MRRS-05-06, Swansea University Mathematics Department.Google Scholar
  6. Cardone, F., and J.R. Hindley. 2009. Lambda-calculus and combinators in the 20th century. In Handbook of the history of logic, Logic from Russell to Church, vol. 5, eds. D.M. Gabbay and J. Woods, 723–817. Oxford: North-Holland Publishing Company.CrossRefGoogle Scholar
  7. Church, A. 1932. A set of postulates for the foundation of logic. Annals of Mathematics 33(2): 346–366.CrossRefGoogle Scholar
  8. Church, A. 1941. The calculi of lambda-conversion. Annals of mathematical studies 6. Princeton: Princeton University Press.Google Scholar
  9. Coy, W. 1995. Automat—Werkzeug—Medium. Informatik Spektrum 18(1): 31–38.Google Scholar
  10. Curry, H.B. 1930. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics 52(3): 789–834.CrossRefGoogle Scholar
  11. Curry, H.B. 1941. The paradox of Kleene and Rosser. Transactions of the American Mathematical Society 50: 454–516.CrossRefGoogle Scholar
  12. Curry, H.B., and R. Feys. 1958. Combinatory logic, vol. 1. Amsterdam: North-Holland Publishing Company.Google Scholar
  13. De Mol, L., M. Bullynck, and M. Carl´e. 2010. Haskell before Haskell. Curry’s contribution to a theory of programming. Programs, Proofs, Processes, Computability in Europe 6158: 108–117.Google Scholar
  14. Frege, G. 1962 [1893]b. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. Hildesheim: Olms.Google Scholar
  15. Frege, G. 1964 [1893]a. Basic laws of arithmetic. Exposition of the system. Berkeley/Los Angeles/London: University of California Press.Google Scholar
  16. Frege, G. 1967 [1879]. Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought, 1–82. See van Heijenoort (1967).Google Scholar
  17. Frege, G. 1980. Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell, sowie ausgewählte Einzelbriefe Freges. Hamburg: Felix Meiner Verlag.CrossRefGoogle Scholar
  18. Frege, G. 1985 [1891]. Function and concept. In Collected papers on mathematics, logic, and philosophy, ed. B. McGuinness, 137–156. Oxford: Basil Blackwell Publisher Ltd.Google Scholar
  19. Friedewald, M. 1999. Der Computer als Werkzeug und Medium. Die geistigen und technischen Wurzeln des Personal Computers. Number 3 in Aaachener Beiträge zur Wissenschafts- und Technikgeschichte des 20. Jahrhunderts. Berlin/Diepholz: Verlag für Geschichte der Naturwissenschaften und der Technik.Google Scholar
  20. Hallward, Peter. 2003. Badiou: A subject to truth Minneapolis: University of Minnesota Press.Google Scholar
  21. Heck Jr., R.G. 2012. Reading Frege’s Grundgesetze. Oxford: Oxford University Press.Google Scholar
  22. Hintikka, J. 1997. Lingua universalis vs. calculus ratiocinator. An ultimate presupposition of twentieth-century philosophy, Jaakko Hintikka selected papers, vol. 2 Dordrecht: Kluwer Academic Publishers.Google Scholar
  23. Kanamori, A. 2003. The empty set, the singleton, and the ordered pair. The Bulletin of Symbolic Logic 9(3): 273–298.CrossRefGoogle Scholar
  24. Kanamori, A. 2004. Zermelo and set theory. The Bulletin of Symbolic Logic 10(4): 487–553.CrossRefGoogle Scholar
  25. Kay, A.C. 1993. The early history of Smalltalk. ACM SIGPLAN Notices 28(3): 69–95.CrossRefGoogle Scholar
  26. Kay, A.C. 2001 [1989]. User-interface: A personal view. In Multimedia. From wagner to virtual reality, eds. R. Packer and K. Jordan, 121–131. New York: Norton & Company Ltd.Google Scholar
  27. Lakatos, I. 1976. Proofs and refutations. The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Landin, P.J. 1964. The mechanical evaluation of expressions. Computer Journal 6: 308–320.CrossRefGoogle Scholar
  29. Leibniz, G.W. 1896 [1765]. New essays concerning human understanding. Norwood Mass: Norwood Press.Google Scholar
  30. Liskov, B., R. Atkinson, T. Bloom, E. Moss, C. Schaffert, C. Scheifler, and A. Snyder. 1979, October. CLU reference manual. Technical report, Laboratory for Computer Science. Massachusetts Institute of Technology.Google Scholar
  31. Martin-Löf, P. 1982. Constructive mathematics and computer programming. In Logic, methodology, and philosphy of science VI, eds. J.P.H. Cohen, L.J. Los, and K.P. Podewski, 153–179. Amsterdam: North-Holland.Google Scholar
  32. McCarthy, J. 1960. Recursive functions of symbolic expressions and their computation by machine, part I. Communications of the ACM 3(4): 184–195.CrossRefGoogle Scholar
  33. McCarthy, J. 1962. LISP 1.5 programmer’s manual. Cambridge: The MIT Press.Google Scholar
  34. McIlroy, M.D. 1969. Alternatives to extensible languages. SIGPLAN notices 4 no. 8 (August 1969), May 13. In Proceedings of the Extensible Languages Symposium, Boston, eds. C. Christensen and C.J. Shaw, 50–52.CrossRefGoogle Scholar
  35. Kupka, I., and N. Wilsing 1980 [1971]. Conversational languages. Chichester/New York/Brisbane/Toronto: Wiley.Google Scholar
  36. McLuhan, M. 1964. Understanding media. The extensions of man. New York: New American Library.Google Scholar
  37. Milne, R., and C. Strachey. 1976. A theory of programming semantics. A single work in two parts. London: Chapman and Hall.Google Scholar
  38. Moses, J. 1970. The function of function in lisp or why the funarg problem should be called the environment problem. ACM SIGSAM Bulletin (15): 13–27.CrossRefGoogle Scholar
  39. Nofre, D., M. Priestley, and G. Alberts. 2014. When technology became language. The origins of the linguistic conception of computer programming, 1950–1960. Society for the History of Technology. 55: 40–75.Google Scholar
  40. Peckhaus, V. 2003. Calculus ratiocinator vs. characteristica universalis? The two traditions in logic, revisited. Technical report, Universität Paderborn.Google Scholar
  41. Pelletier, F.J. 2001. Did Frege believe Frege’s principle? Journal of Logic, Language, and Information (10): 87–114.CrossRefGoogle Scholar
  42. Pflüger, J. 2002. Language in computing. In Experimenting in tongues, writing science, ed. M. Dörries, 125–162. Stanford: Stanford University Press.Google Scholar
  43. Pickering, A. 1992. Science as practice and culture. Chicago/London: University of Chicago Press.CrossRefGoogle Scholar
  44. Plotkin, G.D. 1975. Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer Science 1(2): 125–159.CrossRefGoogle Scholar
  45. Priestley, M. 2011. A science of operations. Machines, logic and the invention of programming. London: Springer.Google Scholar
  46. Priestley, M. 2017. AI and the origins of the functional programming language style. Minds and Machines. Journal for Artificial Intelligence, Philosophy and Cognitive Science 27: 449–472.Google Scholar
  47. Quine, W.V.O. 1961. On what there is. In From a logical point of view, 2nd ed., 1–19. New York/Hagerstown/San Fransisco/London: Harper & Row.Google Scholar
  48. Rohrhuber, J. 2008. Das Rechtzeitige. Doppelte Extension und formales Experiment. In Zeitkritische Medienprozesse, ed. Axel Volmar, 195–211. Berlin: Kadmos.Google Scholar
  49. Schönfinkel, M. 1967 [1924]. On the building blocks of mathematical logic. See van Heijenoort(1967), 355–366.Google Scholar
  50. Scott, D. 1970. Outline of a mathematical theory of computation. Technical report PRG02, OUCL.Google Scholar
  51. Serres, M. 2007 [1982]. The Parasite, London; Minneapolis: University of Minnesota Press.Google Scholar
  52. Sgarbi, M. 2010. Umriß der Theorie der Problemgeschichte. In Eine Typologie der Formen der Begriffsgeschichte, eds. R. Pozzo and M. Sgarbi, 185–199. Hamburg: Felix Meiner Verlag.Google Scholar
  53. Shutt, J.N. 2010. Fexprs as the basis of Lisp function application or $vau: The ultimate abstraction. Ph. D. thesis, Worcester Polytechnic Institute, Brown University.Google Scholar
  54. Standish, T.A. 1975. Extensibility in programming language design, ACM SIGPLAN Notices – Special issue on programming language design. In SIGPLAN notices 10(7): 18–21 Association for Computing Machinery (ACM), New York.Google Scholar
  55. Star, S.L., and J.R. Griesemer. 1989. Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in berkeley’s museum of vertebrate zoology, 1907–39. Social Studies of Science 19(387): 387–420.CrossRefGoogle Scholar
  56. Strachey, C. 2000 [1967]. Fundamental concepts in programming languages. Higher-Order and Symbolic Computation 13: 11–49.CrossRefGoogle Scholar
  57. Tho, T. 2008. The consistency of inconsistency. Alain Badiou and the limits of mathematical ontology. Symposium: Canadian Journal of Continental Philosophy 12: 70–92.CrossRefGoogle Scholar
  58. Turner, D.A. 2006. Church’s thesis and functional programming. In Church’s thesis after 70 years, ed. Robert Janusz Adam Olszewski, Jan Wole´nski, 18–21. Frankfurt/Paris/Ebikon/Lancaster/New Brunswick: Ontos Verlag.Google Scholar
  59. Turner, D.A. 2013. Some history of functional programming languages, 1–20. Berlin/Heidelberg: Springer.Google Scholar
  60. van Heijenoort, J. 1967. From Frege to Gödel. A source book in mathematical logic, 1879–1931. Cambridge: Harvard University Press.Google Scholar
  61. Weizenbaum, J. 1968. The funarg problem explained. Technical report, Massachusetts Institute of Technology, Cambridge.Google Scholar
  62. Young, I.M. 1989. Polity and group difference: A critique of the ideal of universal citizenship. Ethics 99(2): 250–274.CrossRefGoogle Scholar
  63. Zermelo, E. 1967 [1908]. Investigations in the foundations of set theory I. See van Heijenoort (1967), 199–215.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Robert Schumann HochschuleDüsseldorfGermany

Personalised recommendations