Advertisement

Acute and Chronic Kidney Transplant Rejection in Adolescents: Causes and Treatment

  • Jonathan H. Pelletier
  • Emeraghi E. David
  • Annabelle N. Chua
  • Eileen Tsai Chambers
Chapter

Abstract

Adolescence is a time of exploration, biochemical and immunological transformation, emotional lability, and transition from childhood to adulthood. During this time, adolescent transplant recipients are vulnerable to poor kidney outcomes including the development of acute and chronic transplant rejection. This chapter will focus on the unique challenges that clinicians face when treating adolescent transplant recipients with particular attention to mechanism, diagnosis, and treatment of acute and chronic kidney transplant rejection.

Keywords

Antibody-mediated rejection T cell-mediated rejection Nonadherence Immune system Donor-specific antibody Chronic allograft dysfunction 

References

  1. 1.
    Fernandez HE, Gjertson D, Date C, Choi IK, Ettenger RB, Tsai EW. Tacrolimus percent coefficient of variation as a marker of acute rejection associated with nonadherence in adolescent renal transplant recipients. Pediatr Transplant. 2011;15:135.CrossRefGoogle Scholar
  2. 2.
    Sellares J, de Freitas DG, Mengel M, Reeve J, Einecke G, Sis B, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12(2):388–99.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wiebe C, Nevins TE, Robiner WN, Thomas W, Matas AJ, Nickerson PW. The synergistic effect of class II HLA epitope-mismatch and nonadherence on acute rejection and graft survival. Am J Transplant. 2015;15(8):2197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Foster BJ, Dahhou M, Zhang X, Platt RW, Samuel SM, Hanley JA. Association between age and graft failure rates in young kidney transplant recipients. Transplantation. 2011;92(11):1237–43.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Smith JM, Ho PL, McDonald RA. Renal transplant outcomes in adolescents: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant. 2002;6(6):493–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Van Arendonk KJ, James NT, Boyarsky BJ, Garonzik-Wang JM, Orandi BJ, Magee JC, et al. Age at graft loss after pediatric kidney transplantation: exploring the high-risk age window. Clin J Am Soc Nephrol. 2013;8(6):1019–26.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gubbels Bupp MR. Sex, the aging immune system, and chronic disease. Cell Immunol. 2015;294(2):102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gourley TS, Wherry EJ, Masopust D, Ahmed R. Generation and maintenance of immunological memory. Semin Immunol. 2004;16(5):323–33.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    IJspeert H, van Schouwenburg PA, van Zessen D, Pico-Knijnenburg I, Driessen GJ, Stubbs AP, et al. Evaluation of the antigen-experienced B-cell receptor repertoire in healthy children and adults. Front Immunol. 2016;7:410.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hooper SR, Gerson AC, Butler RW, Gipson DS, Mendley SR, Lande MB, et al. Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(8):1824–30.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci. 2006;26(25):6885–92.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Galvan A, Hare T, Voss H, Glover G, Casey BJ. Risk-taking and the adolescent brain: who is at risk? Dev Sci. 2007;10(2):F8–F14.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Somerville LH, Hare T, Casey BJ. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J Cogn Neurosci. 2011;23(9):2123–34.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Silverman MH, Jedd K, Luciana M. Neural networks involved in adolescent reward processing: an activation likelihood estimation meta-analysis of functional neuroimaging studies. NeuroImage. 2015;122:427–39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gipson DS, Hooper SR, Duquette PJ, Wetherington CE, Stellwagen KK, Jenkins TL, et al. Memory and executive functions in pediatric chronic kidney disease. Child Neuropsychol. 2006;12(6):391–405.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Haffner D, Nissel R. Growth and puberty in chronic kidney disease. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia: Mosby Elsevier; 2008. p. 709–32.CrossRefGoogle Scholar
  18. 18.
    Rizzoni G, Broyer M, Brunner FP, Brynger H, Challah S, Kramer P, et al. Combined report on regular dialysis and transplantation of children in Europe, XIII, 1983. Proc Eur Dial Transplant Assoc Eur Ren Assoc. 1985;21:66–95.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Haffner D, Zivicnjak M. Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection. Pediatr Nephrol. 2017;32(6):949–64.Google Scholar
  20. 20.
    Nissel R, Brazda I, Feneberg R, Wigger M, Greiner C, Querfeld U, et al. Effect of renal transplantation in childhood on longitudinal growth and adult height. Kidney Int. 2004;66(2):792–800.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tainio J, Qvist E, Vehmas R, Jahnukainen K, Holtta T, Valta H, et al. Pubertal development is normal in adolescents after renal transplantation in childhood. Transplantation. 2011;92(4):404–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Low MJ. Neuroendocrinology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. 13th ed. Philadelphia: Elsevier; 2016. p. 109–75.Google Scholar
  23. 23.
    Ahn JJ, O’Mahony J, Moshkova M, Hanwell HE, Singh H, Zhang MA, et al. Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Mult Scler. 2015;21(6):735–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Brenhouse HC, Schwarz JM. Immunoadolescence: neuroimmune development and adolescent behavior. Neurosci Biobehav Rev. 2016;70:288–99.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liva SM, Voskuhl RR. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol. 2001;167(4):2060–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Mingomataj EC, Bakiri AH. Regulator versus effector paradigm: interleukin-10 as indicator of the switching response. Clin Rev Allergy Immunol. 2016;50(1):97–113.PubMedCrossRefGoogle Scholar
  27. 27.
    McDaniel DO, Rigney DA, McDaniel KY, Windham WJ, Redmond P, Williams B, et al. Early expression profile of inflammatory markers and kidney allograft status. Transplant Proc. 2013;45(4):1520–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Studies NAPRTaC. North American Pediatric Renal Trials and Collaborative Studies 2014 Annual transplant report. 2014.Google Scholar
  30. 30.
    Male D, Brostoff J, Roth DB, Roitt IM. Transplantation and rejection. In: Hyde M, Vosburgh A, editors. Immunology. Philadelphia: Saunders Elsevier; 2013. p. 341–2.CrossRefGoogle Scholar
  31. 31.
    Dharnidharka VR, Fiorina P, Harmon WE. Kidney transplantation in children. N Engl J Med. 2014;371(6):549–58.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tse G, Marson L. Immunology of graft rejection. In: Forsythe JL, editor. Transplantation. Philadelphia: Saunders Elsevier; 2014. p. 34–53.Google Scholar
  33. 33.
    Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Land W. Postischemic reperfusion injury to allografts – a case for ‘innate immunity’? Eur Surg Res. 2002;34(1–2):160–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Investig Surg. 2005;18(6):335–50.CrossRefGoogle Scholar
  36. 36.
    Tilney NL, Guttmann RD. Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation. 1997;64(7):945–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lu CY, Winterberg PD, Chen J, Hartono JR. Acute kidney injury: a conspiracy of toll-like receptor 4 on endothelia, leukocytes, and tubules. Pediatr Nephrol. 2012;27(10):1847–54.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Briscoe DM, Alexander SI, Lichtman AH. Interactions between T lymphocytes and endothelial cells in allograft rejection. Curr Opin Immunol. 1998;10(5):525–31.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim IK, Bedi DS, Denecke C, Ge X, Tullius SG. Impact of innate and adaptive immunity on rejection and tolerance. Transplantation. 2008;86(7):889–94.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Colvin RB. Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. J Am Soc Nephrol. 2007;18(4):1046–56.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury. Transplant Rev (Orlando). 2009;23(1):1–10.CrossRefGoogle Scholar
  42. 42.
    Boros P, Bromberg JS. New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant. 2006;6(4):652–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mitchell P, Afzali B, Lombardi G, Lechler RI. The T helper 17-regulatory T cell axis in transplant rejection and tolerance. Curr Opin Organ Transplant. 2009;14(4):326–31.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Alegre ML, Leemans J, Le Moine A, Florquin S, De Wilde V, Chong A, et al. The multiple facets of toll-like receptors in transplantation biology. Transplantation. 2008;86(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cardinal H, Dieude M, Hebert MJ. The emerging importance of non-HLA autoantibodies in kidney transplant complications. J Am Soc Nephrol. 2017;28(2):400–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Dikdan GS, Mora-Esteves C, Koneru B. Review of randomized clinical trials of donor management and organ preservation in deceased donors: opportunities and issues. Transplantation. 2012;94(5):425–41.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zheng X, Zang G, Jiang J, He W, Johnston NJ, Ling H, et al. Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with siRNA cocktail solution. Transplantation. 2016;100(4):743–52.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rogers NM, Zhang ZJ, Wang JJ, Thomson AW, Isenberg JS. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion. Kidney Int. 2016;90(2):334–47.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Benichou G, Thomson AW. Direct versus indirect allorecognition pathways: on the right track. Am J Transplant. 2009;9(4):655–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    NCBI. NIH. 2016. Available from: https://www.ncbi.nlm.nih.gov/gene/.
  51. 51.
    Benichou G, Valujskikh A, Heeger PS. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice. J Immunol. 1999;162(1):352–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Marino J, Paster J, Benichou G. Allorecognition by T lymphocytes and allograft rejection. Front Immunol. 2016;7:582.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Herrera OB, Golshayan D, Tibbott R, Ochoa FS, James MJ, Marelli-Berg FM, et al. A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 2004;173(8):4828–37.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ingulli E. Mechanism of cellular rejection in transplantation. Pediatr Nephrol. 2010;25(1):61–74.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bach F, Hirschhorn K. Lymphocyte interaction: a potential histocompatibility test in vitro. Science. 1964;143(3608):813–4.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kaye J, Hedrick SM. Analysis of specificity for antigen, Mls, and allogenic MHC by transfer of T-cell receptor alpha- and beta-chain genes. Nature. 1988;336(6199):580–3.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Daniel C, Horvath S, Allen PM. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity. 1998;8(5):543–52.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Weber DA, Terrell NK, Zhang Y, Strindberg G, Martin J, Rudensky A, et al. Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J Immunol. 1995;154(10):5153–64.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med. 1982;155(1):31–41.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ali JM, Bolton EM, Bradley JA, Pettigrew GJ. Allorecognition pathways in transplant rejection and tolerance. Transplantation. 2013;96(8):681–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Halloran PF. Immunosuppressive drugs for kidney transplantation. New Engl J Med. 2004;351(26):2715–29.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N Engl J Med. 2010;363(15):1451–62.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Baliga P, Chavin KD, Qin L, Woodward J, Lin J, Linsley PS, et al. CTLA4Ig prolongs allograft survival while suppressing cell-mediated immunity. Transplantation. 1994;58(10):1082–90.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313(5795):1972–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Schneider H, Smith X, Liu H, Bismuth G, Rudd CE. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol. 2008;38(1):40–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. Visualization of specific B and T lymphocyte interactions in the lymph node. Science. 1998;281(5373):96–9.CrossRefGoogle Scholar
  68. 68.
    Linsley PS, Wallace PM, Johnson J, Gibson MG, Greene JL, Ledbetter JA, et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992;257(5071):792–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A. 1997;94(16):8789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5(3):443–53.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Charpentier B, Medina Pestana JO, Del CRM, Rostaing L, Grinyo J, Vanrenterghem Y, et al. Long-term exposure to belatacept in recipients of extended criteria donor kidneys. Am J Transplant. 2013;13(11):2884–91.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Rostaing L, Vincenti F, Grinyo J, Rice KM, Bresnahan B, Steinberg S, et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013;13(11):2875–83.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016;374(4):333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Lerch C, Kanzelmeyer NK, Ahlenstiel-Grunow T, Froede K, Kreuzer M, Drube J, et al. Belatacept after kidney transplantation in adolescents: a retrospective study. Transpl Int. 2017;30(5):494–501.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chopra B, Sureshkumar KK. Co-stimulatory blockade with belatacept in kidney transplantation. Expert Opin Biol Ther. 2014;14(5):563–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Grinyo J, Charpentier B, Pestana JM, Vanrenterghem Y, Vincenti F, Reyes-Acevedo R, et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation. 2010;90(12):1521–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Okimura K, Maeta K, Kobayashi N, Goto M, Kano N, Ishihara T, et al. Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects. Am J Transplant. 2014;14(6):1290–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ma A, Dun H, Song L, Hu Y, Zeng L, Bai J, et al. Pharmacokinetics and pharmacodynamics of ASKP1240, a fully human anti-CD40 antibody, in normal and renal transplanted Cynomolgus monkeys. Transplantation. 2014;97(4):397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wang D, Matsumoto R, You Y, Che T, Lin XY, Gaffen SL, et al. CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol. 2004;24(1):164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shapiro R, Zeevi A, Basu A, Tan HP, Kayler LK, Blisard DM, et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. Transplantation. 2008;85(8):1125–32.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tan HP, Kaczorowski D, Basu A, McCauley J, Marcos A, Donaldson J, et al. Steroid-free tacrolimus monotherapy after pretransplantation thymoglobulin or Campath and laparoscopy in living donor renal transplantation. Transplant Proc. 2005;37(10):4235–40.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shapiro R, Basu A, Tan H, Gray E, Kahn A, Randhawa P, et al. Kidney transplantation under minimal immunosuppression after pretransplant lymphoid depletion with Thymoglobulin or Campath. J Am Coll Surg. 2005;200(4):505–15. quiz A59–61PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sung J, Barry JM, Jenkins R, Rozansky D, Iragorri S, Conlin M, et al. Alemtuzumab induction with tacrolimus monotherapy in 25 pediatric renal transplant recipients. Pediatr Transplant. 2013;17(8):718–25.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Supe-Markovina K, Melquist JJ, Connolly D, DiCarlo HN, Waltzer WC, Fine RN, et al. Alemtuzumab with corticosteroid minimization for pediatric deceased donor renal transplantation: a seven-yr experience. Pediatr Transplant. 2014;18(4):363–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kaabak MM, Babenko NN, Samsonov DV, Sandrikov VA, Maschan AA, Zokoev AK. Alemtuzumab induction in pediatric kidney transplantation. Pediatr Transplant. 2013;17(2):168–78.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Crowson CN, Reed RD, Shelton BA, MacLennan PA, Locke JE. Lymphocyte-depleting induction therapy lowers the risk of acute rejection in African American pediatric kidney transplant recipients. Pediatr Transplant. 2017;21(1):e12823.CrossRefGoogle Scholar
  88. 88.
    Akalin E, Hendrix RC, Polavarapu RG, Pearson TC, Neylan JF, Larsen CP, et al. Gene expression analysis in human renal allograft biopsy samples using high-density oligoarray technology. Transplantation. 2001;72(5):948–53.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hoffmann SC, Hale DA, Kleiner DE, Mannon RB, Kampen RL, Jacobson LM, et al. Functionally significant renal allograft rejection is defined by transcriptional criteria. Am J Transplant. 2005;5(3):573–81.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol. 2002;2(6):401–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Bradley JA, Mason DW, Morris PJ. Evidence that rat renal allografts are rejected by cytotoxic T cells and not by nonspecific effectors. Transplantation. 1985;39(2):169–75.PubMedCrossRefGoogle Scholar
  92. 92.
    Al-Lamki RS, Wang J, Skepper JN, Thiru S, Pober JS, Bradley JR. Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants. Lab Investig. 2001;81(11):1503–15.PubMedCrossRefGoogle Scholar
  93. 93.
    Kwun J, Manook M, Page E, Burghuber C, Hong J, Knechtle SJ. Crosstalk between T and B cells in the germinal center after transplantation. Transplantation. 2017;101(4):704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ng YW, Singh M, Sarwal MM. Antibody-mediated rejection in pediatric kidney transplantation: pathophysiology, diagnosis, and management. Drugs. 2015;75(5):455–72.PubMedCrossRefGoogle Scholar
  95. 95.
    Sarwal M, Chua MS, Kambham N, Hsieh SC, Satterwhite T, Masek M, et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med. 2003;349(2):125–38.PubMedCrossRefGoogle Scholar
  96. 96.
    Zarkhin V, Kambham N, Li L, Kwok S, Hsieh SC, Salvatierra O, et al. Characterization of intra-graft B cells during renal allograft rejection. Kidney Int. 2008;74(5):664–73.PubMedCrossRefGoogle Scholar
  97. 97.
    Terasaki PI. Humoral theory of transplantation. Am J Transplant. 2003;3(6):665–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Alegre ML, Florquin S, Goldman M. Cellular mechanisms underlying acute graft rejection: time for reassessment. Curr Opin Immunol. 2007;19(5):563–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Bhatti AB, Usman M. Chronic renal transplant rejection and possible anti-proliferative drug targets. Cureus. 2015;7(11):e376.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tsai EW, Rianthavorn P, Gjertson DW, Wallace WD, Reed EF, Ettenger RB. CD20+ lymphocytes in renal allografts are associated with poor graft survival in pediatric patients. Transplantation. 2006;82(12):1769–73.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Tsai EW, Wallace WD, Gjertson DW, Reed EF, Ettenger RB. Significance of intragraft CD138+ lymphocytes and p-S6RP in pediatric kidney transplant biopsies. Transplantation. 2010;90(8):875–81.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Durkan AM, Robinson LA. Acute allograft dysfunction. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia: Mosby Elsevier; 2008. p. 931–45.CrossRefGoogle Scholar
  103. 103.
    Goldberg RJ, Weng FL, Kandula P. Acute and chronic allograft dysfunction in kidney transplant recipients. Med Clin N Am. 2016;100(3):487–503.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Crespo E, Roedder S, Sigdel T, Hsieh SC, Luque S, Cruzado JM, Tran TQ, Grinyó JM, Sarwal MM, Bestard O. Relationship among viremia/viral Infection, alloimmunity, and nutritional parameters in the first year after pediatric kidney transplantation. Transplantation. 2017;101(6):1400–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Solez K, Axelsen RA, Benediktsson H, Burdick JF, Cohen AH, Colvin RB, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993;44(2):411–22.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999;55(2):713–23.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant. 2017;17(1):28–41.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Gray D, Shepherd H, Daar A, Oliver DO, Morris PJ. Oral versus intravenous high-dose steroid treatment of renal allograft rejection. The big shot or not? Lancet. 1978;1(8056):117–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Vineyard GC, Fadem SZ, Dmochowski J, Carpenter CB, Wilson RE. Evaluation of corticosteroid therapy for acute renal allograft rejection. Surg Gynecol Obstet. 1974;138(2):225–9.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kidney Disease: Improving Global Outcomes Transplant Work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.Google Scholar
  111. 111.
    Webster AC, Pankhurst T, Rinaldi F, Chapman JR, Craig JC. Monoclonal and polyclonal antibody therapy for treating acute rejection in kidney transplant recipients: a systematic review of randomized trial data. Transplantation. 2006;81(7):953–65.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Upadhyay K, Midgley L, Moudgil A. Safety and efficacy of alemtuzumab in the treatment of late acute renal allograft rejection. Pediatr Transplant. 2012;16(3):286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    van den Hoogen MW, Hesselink DA, van Son WJ, Weimar W, Hilbrands LB. Treatment of steroid-resistant acute renal allograft rejection with alemtuzumab. Am J Transplant. 2013;13(1):192–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ettenger R, Chin H, Kesler K, Bridges N, Grimm P, Reed EF, Sarwal M, Sibley R, Tsai E, Warshaw B, Kirk AD. Relationship among viremia/viral infection, alloimmunity, and nutritional parameters in the first year after pediatric kidney transplantation. Am J Transplant. 2016;17(6):1549–62.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rees L, Kim JJ. HLA sensitisation: can it be prevented? Pediatr Nephrol. 2015;30(4):577–87.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Pizzo HP, Ettenger RB, Gjertson DW, Reed EF, Zhang J, Gritsch HA, et al. Sirolimus and tacrolimus coefficient of variation is associated with rejection, donor-specific antibodies, and nonadherence. Pediatr Nephrol. 2016;31(12):2345–52.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sicard A, Ducreux S, Rabeyrin M, Couzi L, McGregor B, Badet L, et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J Am Soc Nephrol. 2015;26(2):457–67.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sutherland SM, Chen G, Sequeira FA, Lou CD, Alexander SR, Tyan DB. Complement-fixing donor-specific antibodies identified by a novel C1q assay are associated with allograft loss. Pediatr Transplant. 2012;16(1):12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int. 2016;90(2):280–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Zhang Q, Reed EF. The importance of non-HLA antibodies in transplantation. Nat Rev Nephrol. 2016;12(8):484–95.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Webb NJ, Maxwell H. Chronic renal transplant dysfunction. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia: Mosby Elsevier; 2008. p. 947–65.CrossRefGoogle Scholar
  122. 122.
    Haas M. An updated Banff schema for diagnosis of antibody-mediated rejection in renal allografts. Curr Opin Organ Transplant. 2014;19(3):315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Racusen LC, Colvin RB, Solez K, Mihatsch MJ, Halloran PF, Campbell PM, et al. Antibody-mediated rejection criteria – an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant. 2003;3(6):708–14.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, et al. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant. 2014;14(2):272–83.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wiebe C, Pochinco D, Blydt-Hansen TD, Ho J, Birk PE, Karpinski M, et al. Class II HLA epitope matching-A strategy to minimize de novo donor-specific antibody development and improve outcomes. Am J Transplant. 2013;13(12):3114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gralla J, Tong S, Wiseman AC. The impact of human leukocyte antigen mismatching on sensitization rates and subsequent retransplantation after first graft failure in pediatric renal transplant recipients. Transplantation. 2013;95(10):1218–24.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Xu H, Samy KP, Guasch A, Mead SI, Ghali A, Mehta A, et al. Postdepletion lymphocyte reconstitution during belatacept and rapamycin treatment in kidney transplant recipients. Am J Transplant. 2016;16(2):550–64.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Kirk AD, Guasch A, Xu H, Cheeseman J, Mead SI, Ghali A, et al. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant. 2014;14(5):1142–51.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Henriksson J, Tyden G, Hoijer J, Wadstrom JA. Prospective randomized trial on the effect of using an electronic monitoring drug dispensing device to improve adherence and compliance. Transplantation. 2016;100(1):203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Kreuzer M, Prufe J, Bethe D, Vogel C, Grosshennig A, Koch A, et al. The TRANSNephro-study examining a new transition model for post-kidney transplant adolescents and an analysis of the present health care: study protocol for a randomized controlled trial. Trials. 2014;15:505.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Browning RB, McGillicuddy JW, Treiber FA, Taber DJ. Kidney transplant recipients’ attitudes about using mobile health technology for managing and monitoring medication therapy. J Am Pharm Assoc (2003). 2016;56(4):450–4. e1CrossRefGoogle Scholar
  132. 132.
    Bonomini V, Vangelista A, Frasca GM, Di Felice A, Liviano D’Arcangelo G. Effects of plasmapheresis in renal transplant rejection. A controlled study. Trans Am Soc Artif Intern Organs. 1985;31:698–703.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Montgomery RA, Zachary AA, Racusen LC, Leffell MS, King KE, Burdick J, et al. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation. 2000;70(6):887–95.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Rocha PN, Butterly DW, Greenberg A, Reddan DN, Tuttle-Newhall J, Collins BH, et al. Beneficial effect of plasmapheresis and intravenous immunoglobulin on renal allograft survival of patients with acute humoral rejection. Transplantation. 2003;75(9):1490–5.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Zarkhin V, Li L, Kambham N, Sigdel T, Salvatierra O, Sarwal MM. A randomized, prospective trial of rituximab for acute rejection in pediatric renal transplantation. Am J Transplant. 2008;8(12):2607–17.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Gulleroglu K, Baskin E, Bayrakci US, Turan M, Ozdemir BH, Moray G, et al. Antibody-mediated rejection and treatment in pediatric patients: one center’s experience. Exp Clin Transplant. 2013;11(5):404–7.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Pearl MH. Bortezomib may stabilize pediatric renal transplant recipients with antibody-mediated rejection. Pediatric Nephrology. 2016;31(8):1341–8.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Nguyen S, Gallay B, Butani L. Efficacy of bortezomib for reducing donor-specific antibodies in children and adolescents on a steroid minimization regimen. Pediatr Transplant. 2014;18(5):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Sautenet B, Blancho G, Buchler M, Morelon E, Toupance O, Barrou B, et al. One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation. 2016;100(2):391–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Delbue S, Ferraresso M, Elia F, Belingheri M, Carloni C, Signorini L, et al. Investigation of polyomaviruses replication in pediatric patients with nephropathy receiving rituximab. J Med Virol. 2012;84(9):1464–70.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Gulleroglu K, Baskin E, Moray G, Ozdemir H, Arslan H, Haberal M. Rituximab therapy and infection risk in pediatric renal transplant patients. Exp Clin Transplant. 2016;14(2):172–5.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Kizilbash S, Claes D, Ashoor I, Chen A, Jandeska S, Matar RB, et al. Bortezomib in the treatment of antibody-mediated rejection in pediatric kidney transplant recipients: a multicenter Midwest Pediatric Nephrology Consortium study. Pediatr Transplant. 2017;21(3):e12873.CrossRefGoogle Scholar
  143. 143.
    Choi J, Aubert O, Vo A, Loupy A, Haas M, Puliyanda D, et al. Assessment of tocilizumab (anti-interleukin-6 receptor monoclonal) as a potential treatment for chronic antibody-mediated rejection and transplant glomerulopathy in HLA-sensitized renal allograft recipients. Am J Transplant. 2017;17:2381–9.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Kim I, Wu G, Chai NN, Klein AS, Jordan S. Anti-interleukin 6 receptor antibodies attenuate antibody recall responses in a mouse model of allosensitization. Transplantation. 2014;98(12):1262–70.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Jordan SC, Vo AA, Toyoda M, Tyan D, Nast CC. Post-transplant therapy with high-dose intravenous gammaglobulin: applications to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9(2):155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Ghirardo G, Benetti E, Poli F, Vidal E, Della Vella M, Cozzi E, et al. Plasmapheresis-resistant acute humoral rejection successfully treated with anti-C5 antibody. Pediatr Transplant. 2014;18(1):E1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Burbach M, Suberbielle C, Brocheriou I, Ridel C, Mesnard L, Dahan K, et al. Report of the inefficacy of eculizumab in two cases of severe antibody-mediated rejection of renal grafts. Transplantation. 2014;98(10):1056–9.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Locke JE, Magro CM, Singer AL, Segev DL, Haas M, Hillel AT, et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant. 2009;9(1):231–5.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Cornell LD, Schinstock CA, Gandhi MJ, Kremers WK, Stegall MD. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am J Transplant. 2015;15(5):1293–302.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Montgomery RA, Orandi BJ, Racusen L, Jackson AM, Garonzik-Wang JM, Shah T, et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am J Transplant. 2016;16:3468–78.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jonathan H. Pelletier
    • 1
  • Emeraghi E. David
    • 1
  • Annabelle N. Chua
    • 1
  • Eileen Tsai Chambers
    • 1
  1. 1.Department of PediatricsDuke University Medical CenterDurhamUSA

Personalised recommendations