Advertisement

Minimal Lethal Disturbance for Finite Dimensional Linear Systems

  • Abdes Samed Bernoussi
  • Mina Amharref
  • Mustapha Ouardouz
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

In this work we consider the problem of robust viability and viability radius for finite dimensional disturbed linear systems. The problem consists in the determination of the smallest disturbance f (in some disturbance set \({\mathcal {F}}\)), for which a given viable state z0 does not remains viable. We also consider the problem of the determination of the smallest disturbance f for which the viability set \(Viab_{{\mathcal {K}}}^{f}\) becomes empty; the smallest disturbance that makes all the \({\mathcal {K}}\)-viable states non viable, which we call the Minimal Lethal Disturbance (MLD). We give some characterizations of the viability radius and an illustration through some examples and connection with toxicity in biology.

Keywords

Viability Viability radius Minimal lethal disturbance Robustness 

Notes

Acknowledgements

This work, presented in Honor of Prof. Norbert Hounkonnou for his 60th Birthday, is supported by MESRCFC and CNRST, Morocco under the projectPPR2/2016/79, OGI-Env.

References

  1. 1.
    J.P. Aubin, Viability Theory (Birkhäuser, Boston, 1991)zbMATHGoogle Scholar
  2. 2.
    J.P. Aubin, A viability approach to the inverse set-valued theorem. J. Evol. Equ. 6, 419–432 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.P. Aubin, Viability kernels and capture basins of sets under differential inclusions. SIAM J. Control Optim. 40(3), 853–881 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Alvarez, S. Martin, Geometric robustness of viability kernels and resilience basins, in Viability and Resilience of Complex Systems (Springer, Berlin, Heidelberg) , pp. 193–218Google Scholar
  5. 5.
    M. Amharref, S. Aassine, A. Bernoussi, B. Haddouchi, Carthographie de la vulnérabilité à la pollution des eaux souterraines: Application à la plaine du Gharb. Revue des Sciences de l’Eau 20(2), 185–199 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Amharref, A. Bernoussi, Vulnérabilité et risque de pollution des eaux souterraines. Actes des JSIRAUF (Journées Sientifiques Inter Réseaux de l’Agence Universitaire de la Francophonie), Hanoi, 6–9 Novembre 2007 (2007)Google Scholar
  7. 7.
    J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3 (Cambridge University Press, Cambridge, 1999)zbMATHGoogle Scholar
  8. 8.
    S. Adler, G. Bicker, H. Bigalke, C. Bishop, J. Blümel, D. Dressler et al., The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing, in The Report and Recommendations of a ZEBET Expert Meeting. ATLA, vol. 38(4) (August 2010), pp. 315–330Google Scholar
  9. 9.
    M. Amharref, A. Bernoussi, Groundwater pollution risk, in Systems Theory: Modeling, Analysis and Control, Fes-2009, ed. by A. El Jai, L. Afifi, E. Zerrik (PUP, Perpignan, 2009), pp. 499–506. ISBN 978-2-35412-043-6Google Scholar
  10. 10.
    T.S.S. Dikshith, P.V. Diwan, Industrial Guide to Chemical and Drug Safety (Wiley, New York, 2003)CrossRefGoogle Scholar
  11. 11.
    E. Schlede, U. Mischke, R. Roll, D. Kayser, A national validation study of the acute-toxic-class method-an alternative to the LD50 test. Arch. Toxicol. 66(7), 455–470 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdes Samed Bernoussi
    • 1
  • Mina Amharref
    • 1
  • Mustapha Ouardouz
    • 2
  1. 1.GATTangierMorocco
  2. 2.MMC Team, Faculty of Sciences and TechniquesTangierMorocco

Personalised recommendations