Advertisement

Mathematics and Emotions: The Case of Math Anxiety

  • Vitor Geraldi HaaseEmail author
  • Amanda Paola Lobo Guimarães
  • Guilherme Wood
Chapter

Abstract

Math anxiety (MA), or the negative physiological, emotional, and cognitive states frequently aroused by math activities, is/are recognized as an important threat to human development and well-being. MA manifests itself at the cognitive (negative thoughts and rumination), emotional (negative affect), physiological (arousal, sweating), and behavioral (math avoidance) levels. We review current knowledge regarding MA as a construct and its genetic, personal, familiar, educational, and cultural antecedents and consequents. MA is both an antecedent and a consequent of low math achievement. MA leads to negative attitudes, beliefs, and avoidance of math, reducing math learning opportunities and constraining career choices. MA directly disrupts automatic and controlled numerical processing and calculations through several mechanisms: speed-accuracy trade-offs, competition for resources and faulty inhibition in working memory, attentional bias, maladaptive error responses, and complex arousal effects. A reciprocal inhibition between dorsal cortical areas associated with controlled and math processing and activation of ventral areas related to negative emotions has been proposed. Recognition of MA is based on observation and self-report questionnaires assessing its cognitive and affective dimensions. Currently, there are no external validity criteria regarding the severity level and psychosocial impact of MA. The role of negative experiences with parents and teachers as a source of MA and the ways to effectively prevent and cope with them are underlined. There is growing interest in the application of new technologies to relieve MA. The psychosocial relevance of MA is likely to persist, or even to increase, as our society becomes increasingly dependent on technology.

Keywords

Math anxiety Working memory Numerical processing Math achievement Parents Teachers Peers 

References

Obs. References marked with # refer to self-report questionnaires presented in Tables 29.1, 29.2, and 29.3.

  1. Akin, A., & Kurbanoglu, I. N. (2011). The relationships between math anxiety, math attitudes, and self-efficacy: A structural equation model. Studia Psychologica, 53(3), 263.Google Scholar
  2. Alexander, L., & Martray, C. R. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22(3), 143150 #.CrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: Author.  https://doi.org/10.1176/appi.books.9780890425596 CrossRefGoogle Scholar
  4. Andrews, A., & Brown, J. (2015). The effects of math anxiety. Education, 135(3), 362–370 #.Google Scholar
  5. Ariapooran, S. (2017). Mathematics motivation, anxiety, and performance in female deaf/hard-of-hearing and hearing students. Communication Disorders Quarterly, 38(3), 172–178.  https://doi.org/10.1177/1525740116681271 #.CrossRefGoogle Scholar
  6. Aronson, A. R., & Lang, F. M. (2010). An overview of MetaMap: Historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229–236.  https://doi.org/10.1136/jamia.2009.002733 CrossRefGoogle Scholar
  7. Aronson, J., Lustina, M. J., Good, C., Keough, K., Steele, C. M., & Brown, J. (1999). When white men can't do math: Necessary and sufficient factors in stereotype threat. Journal of Experimental Social Psychology, 35(1), 29–46.  https://doi.org/10.1006/jesp.1998.1371 CrossRefGoogle Scholar
  8. Artemenko, C., Daroczy, G., & Nuerk, H. C. (2015). Neural correlates of math anxiety – An overview and implications. Frontiers in Psychology, 6, 1333.  https://doi.org/10.3389/fpsyg.2015.01333 CrossRefGoogle Scholar
  9. Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition and Emotion, 8(2), 97–125.  https://doi.org/10.1080/02699939408408931 CrossRefGoogle Scholar
  10. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237.  https://doi.org/10.1037/0096-3445.130.2.224 CrossRefGoogle Scholar
  11. Ashcraft, M. H., Krause, J. A., & Hopko, D. R. (2007). Is math anxiety a mathematical learning disability? In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (Vol. 29, pp. 329–348). Baltimore, MD: Brookes.  https://doi.org/10.1097/DBP.0b013e31817aefe8 CrossRefGoogle Scholar
  12. Ashcraft, M. H., & Ridley, K. S. (2005). Math anxiety and its cognitive consequences: A tutorial review. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 315–327). New York: Psychology Press.  https://doi.org/10.4324/9780203998045 CrossRefGoogle Scholar
  13. Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral characteristics over s six-year period in youths with persistent and nonpersistent dyscalculia. Journal of Learning Disabilities, 41(3), 263–273.  https://doi.org/10.1177/0022219408315637 CrossRefGoogle Scholar
  14. Austin, S., Wadlington, E., & Bitner, J. (1992). Effect of beliefs about mathematics on math anxiety and math self-concept in elementary teachers. Education, 112(3), 390–396 #.Google Scholar
  15. Baalsrud-Hauge, J. M., Stanescu, I. A., Arnab, S., Ger, P. M., Lim, T., Serrano-Laguna, A., et al. (2015). Learning through analytics architecture to scaffold learning experience through technology-based methods. International Journal of Serious Games, 2(1), 29–44.  https://doi.org/10.17083/ijsg.v2i1.38 CrossRefGoogle Scholar
  16. Babad, E. (2009). The social psychology of the classroom. London: Routledge.  https://doi.org/10.4324/9780203872475 CrossRefGoogle Scholar
  17. Bai, H., Wang, L., Pan, W., & Frey, M. (2009). Measuring mathematics anxiety: Psychometric analysis of a bidimensional affective scale. Journal of Instructional Psychology, 36(3), 185–194 #.Google Scholar
  18. Baloglu, M., & Kocak, R. (2006). A multivariate investigation of the differences in mathematics anxiety. Personality and Individual Differences, 40(7), 1325–1335.  https://doi.org/10.1016/j.paid.2005.10.009 #.CrossRefGoogle Scholar
  19. Bastin, C., Harrison, B. J., Davey, C. G., Moll, J., & Whittle, S. (2016). Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review. Neuroscience & Biobehavioral Reviews, 71, 455–471.  https://doi.org/10.1016/j.neubiorev.2016 CrossRefGoogle Scholar
  20. Batchelor, S., Gilmore, C., & Inglis, M. (2017). Parents’ and children’s mathematics anxiety. In U. Xolocotzin Eligio (Ed.), Understanding emotions in mathematical thinking and learning (pp. 315–336). San Diego: Academic.CrossRefGoogle Scholar
  21. Beddington, J., Cooper, C. L., Field, J., Goswami, U., Huppert, F. A., Jenkins, R., et al. (2008). The mental wealth of nations. Nature, 455(7216), 1057–1060.  https://doi.org/10.1038/4551057a CrossRefGoogle Scholar
  22. Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863.  https://doi.org/10.1073/pnas.0910967107 #.CrossRefGoogle Scholar
  23. Beilock, S. L., & Willingham, D. T. (2014). Math anxiety: Can teachers help students reduce it? Ask the cognitive scientist. American Educator, 38(2), 28.Google Scholar
  24. Bekdemir, M. (2010). The pre-service teachers’ mathematics anxiety related to depth of negative experiences in mathematics classroom while they were students. Educational Studies in Mathematics, 75(3), 311–328.  https://doi.org/10.1007/s10649-010-9260-7 CrossRefGoogle Scholar
  25. Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196–198.  https://doi.org/10.1126/science.aac7427 CrossRefGoogle Scholar
  26. Betz, N. E. (1978). Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology, 25(5), 441.  https://doi.org/10.1037/0022-0167.25.5.441 #.CrossRefGoogle Scholar
  27. Biondi, R. L., Vasconcellos, L., Menezes-Filho, N., & Cristia, J. P. (2012). Evaluating the impact of the Brazilian public school math Olympics on the quality of education [with comment]. Economia, 12(2), 143–175.  https://doi.org/10.1353/eco.2012.0004 CrossRefGoogle Scholar
  28. Blatchford, P. (1996). Pupils’ views on school work and school from 7 to 16 years. Research Papers in Education, 11(3), 263–288.  https://doi.org/10.1080/0267152960110305 CrossRefGoogle Scholar
  29. Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really?. Educational psychology review, 15(1), 1-40. doi:  https://doi.org/10.1023/A:1021302408382 CrossRefGoogle Scholar
  30. Bosmans, G., & De Smedt, B. (2015). Insecure attachment is associated with math anxiety in middle childhood. Frontiers in Psychology, 6, 1506.  https://doi.org/10.3389/fpsyg.2015.01596 CrossRefGoogle Scholar
  31. Brunyé, T. T., Mahoney, C. R., Giles, G. E., Rapp, D. N., Taylor, H. A., & Kanarek, R. B. (2013). Learning to relax: Evaluating four brief interventions for overcoming the negative emotions accompanying math anxiety. Learning and Individual Differences, 27, 1–7.  https://doi.org/10.1016/j.lindif.2013.06.008 CrossRefGoogle Scholar
  32. Budd, C. J. (2015). Promoting maths to the general public. In R. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 3–16). Oxford: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.024 CrossRefGoogle Scholar
  33. Buelow, M. T., & Frakey, L. L. (2013). Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates. Archives of Clinical Neuropsychology, 28(4), 356–362.  https://doi.org/10.1093/arclin/act006 #.CrossRefGoogle Scholar
  34. Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36–41.  https://doi.org/10.1111/cdep.12059 CrossRefGoogle Scholar
  35. Bursal, M., & Paznokas, L. (2006). Mathematics anxiety and preservice elementary teachers' confidence to teach mathematics and science. School Science and Mathematics, 106(4), 173–180.  https://doi.org/10.1111/j.1949-8594.2006.tb18073.x CrossRefGoogle Scholar
  36. Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: Identification and intervention. Mathematics Education, 42, 527–539.  https://doi.org/10.1007/s11858-010-0267-4 CrossRefGoogle Scholar
  37. Carey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987.  https://doi.org/10.3389/fpsyg.2015.01987 CrossRefGoogle Scholar
  38. Cezarotto, M. A., & Battaiola, A. L. (2016). Game design recommendations focusing on children with developmental dyscalculia. In P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies (Vol. 9753). Cham: Springer.  https://doi.org/10.1007/978-3-319-39483-1_42 CrossRefGoogle Scholar
  39. Chapman, B. P., Duberstein, P. R., Sörensen, S., & Lyness, J. M. (2007). Gender differences in Five Factor Model personality traits in an elderly cohort. Personality and Individual Differences, 43(6), 1594–1603.  https://doi.org/10.1016/j.paid.2007.04.028 CrossRefGoogle Scholar
  40. Ching, B. H. H. (2017). Mathematics anxiety and working memory: Longitudinal associations with mathematical performance in Chinese children. Contemporary Educational Psychology, 51, 99–113.  https://doi.org/10.1016/j.cedpsych.2017.06.006 #.CrossRefGoogle Scholar
  41. Chinn, S. (2009). Mathematics anxiety in secondary students in England. Dyslexia, 15(1), 61–68.  https://doi.org/10.1002/dys.381 CrossRefGoogle Scholar
  42. Chiu, L. H., & Henry, L. L. (1990). Development and validation of the Mathematics Anxiety Scale for Children. Measurement and Evaluation in Counseling and Development, 23(3), 121–127. #Google Scholar
  43. Chiu, M. M., & Xihua, Z. (2008). Family and motivation effects on mathematics achievement: Analyses of students in 41 countries. Learning and Instruction, 18(4), 321–336.  https://doi.org/10.1016/j.learninstruc.2007.06.003 CrossRefGoogle Scholar
  44. Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.  https://doi.org/10.4324/9780203883389 CrossRefGoogle Scholar
  45. Clute, P. S. (1984). Mathematics anxiety, instructional method, and achievement in a survey course in college mathematics. Journal for Research in Mathematics Education, 50–58.  https://doi.org/10.2307/748987 #.CrossRefGoogle Scholar
  46. Cribbs, J. D., Hazari, Z., Sonnert, G., & Sadler, P. M. (2015). Establishing an explanatory model for mathematics identity. Child Development, 86(4), 1048–1062.  https://doi.org/10.1111/cdev.12363 CrossRefGoogle Scholar
  47. Dehaene, S. (2009). Reading in the brain: The science and evolution of a human invention. New York: Viking.  https://doi.org/10.1097/01.NT.0000390229.06299.08 CrossRefGoogle Scholar
  48. Devine, A., Fawcett, K., Szűcs, D., & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(1), 33.  https://doi.org/10.1186/1744-9081-8-33 #.CrossRefGoogle Scholar
  49. Dew, K. H., Galassi, J. P., & Galassi, M. D. (1984). Math anxiety: Relation with situational test anxiety, performance, physiological arousal, and math avoidance behavior. Journal of Counseling Psychology, 31(4), 580–583.  https://doi.org/10.1037/0022-0167.31.4.580 CrossRefGoogle Scholar
  50. Dietrich, J. F., Huber, S., Moeller, K., & Klein, E. (2015). The influence of math anxiety on symbolic and non-symbolic magnitude processing. Frontiers in Psychology, 6, 1621.  https://doi.org/10.3389/fpsyg.2015.01621 CrossRefGoogle Scholar
  51. Dougherty, C. (2003). Numeracy, literacy and earnings: Evidence from the National Longitudinal Survey of youth. Economics of Education Review, 22(5), 511–521.  https://doi.org/10.1016/S0272-7757(03)00040-2 CrossRefGoogle Scholar
  52. Dowker, A., Bennett, K., & Smith, L. (2012). Attitudes to mathematics in primary school children. Child Development Research, 2012, 124939.  https://doi.org/10.1155/2012/124939 #.CrossRefGoogle Scholar
  53. Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508.  https://doi.org/10.3389/fpsyg.2016.00508 CrossRefGoogle Scholar
  54. Dreger, R. M., & Aiken Jr., L. R. (1957). The identification of number anxiety in a college population. Journal of Educational Psychology, 48(6), 344–351.  https://doi.org/10.1037/h0045894 #.CrossRefGoogle Scholar
  55. Drisko, J. W. (1993). Personality and gender differences: Comparing clinicians and researchers. Smith College Studies in Social Work, 63(2), 147–161.  https://doi.org/10.1080/00377319309517383 #.CrossRefGoogle Scholar
  56. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290–292.  https://doi.org/10.1126/science.1089134 CrossRefGoogle Scholar
  57. Eisenberger, N. I., Way, B. M., Taylor, S. E., Welch, W. T., & Lieberman, M. D. (2007). Understanding genetic risk for aggression: Clues from the brain’s response to social exclusion. Biological Psychiatry, 61(9), 1100–1108.  https://doi.org/10.1016/j.biopsych.2006.08.007 CrossRefGoogle Scholar
  58. Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6(6), 409–434.  https://doi.org/10.1080/02699939208409696 CrossRefGoogle Scholar
  59. Faust, M. W. (1992). Analysis of physiological reactivity in mathematics anxiety. Unpublished doctoral dissertation, Bowling Green State University, OH.Google Scholar
  60. Faust, M. W., Ashcraft, M. H., & Fleck, D. E. (1996). Mathematics anxiety effects in simple and complex addition. Mathematical Cognition, 2(1), 25–62.  https://doi.org/10.1080/135467996387534 CrossRefGoogle Scholar
  61. Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326.  https://doi.org/10.2307/748467 #.CrossRefGoogle Scholar
  62. Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1–12.  https://doi.org/10.1016/j.lindif.2015.02.007 CrossRefGoogle Scholar
  63. Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. (2010). Development of mathematics interest in adolescence: Influences of gender, family, and school context. Journal of Research on Adolescence, 20(2), 507–537.CrossRefGoogle Scholar
  64. Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Perceived learning environment and students' emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 17(5), 478–493.  https://doi.org/10.1016/j.learninstruc.2007.09.001 CrossRefGoogle Scholar
  65. Frick, A., Åhs, F., Engman, J., Alaie, I., Björkstrand, J., Frans, Ö., et al. (2015). Serotonin synthesis and reuptake in social anxiety disorder: A positron emission tomography study. JAMA Psychiatry, 72(8), 794–802.  https://doi.org/10.1001/jamapsychiatry.2015.012 CrossRefGoogle Scholar
  66. Gierl, M. J., & Bisanz, J. (1995). Anxieties and attitudes related to mathematics in grades 3 and 6. The Journal of Experimental Education, 63(2), 139–158.  https://doi.org/10.1080/00220973.1995.9943818 #.CrossRefGoogle Scholar
  67. Gough, P. B. (1996). How children learn to read and why they fail. Annals of Dyslexia, 46(1), 1–20.  https://doi.org/10.1007/BF02648168 CrossRefGoogle Scholar
  68. Gresham, G. (2007). An invitation into the investigation of the relationship between mathematics anxiety and learning styles in elementary preservice teachers. Journal of Invitational Theory and Practice, 13, 24–33 #.Google Scholar
  69. Gresham, G. (2008). Mathematics anxiety and mathematics teacher efficacy in elementary pre-service teachers. Teaching Education, 19, 171.  https://doi.org/10.1080/10476210802250133 CrossRefGoogle Scholar
  70. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153–166.  https://doi.org/10.1007/s11199-011-9996-2 CrossRefGoogle Scholar
  71. Haase, V. G., Júlio-Costa, A., Pinheiro-Chagas, P., Oliveira, L. F. S., Micheli, L. R., & Wood, G. (2012). Math self-assessement, but not negative feelings, predicts mathematics performance of elementary school children. Child Development Research, 2012, 982672.  https://doi.org/10.1155/2012/982672 #.CrossRefGoogle Scholar
  72. Harari, R. R., Vukovic, R. K., & Bailey, S. P. (2013). Mathematics anxiety in young children: An exploratory study. The Journal of Experimental Education, 81(4), 538–555.  https://doi.org/10.1080/00220973.2012.727888 #.CrossRefGoogle Scholar
  73. Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400–403.  https://doi.org/10.1126/science.1071829 CrossRefGoogle Scholar
  74. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of Learning and Motivation, 22, 193–225.  https://doi.org/10.1016/S0079-7421(08)60041-9 CrossRefGoogle Scholar
  75. Hassinger-Das, B., Jordan, N. C., & Dyson, N. (2015). Reading stories to learn math: Mathematics vocabulary instruction for children with early numeracy difficulties. The Elementary School Journal, 116(2), 242–264.  https://doi.org/10.1086/683986 CrossRefGoogle Scholar
  76. Hazari, Z., Potvin, G., Cribbs, J. D., Godwin, A., Scott, T. D., & Klotz, L. (2017). Interest in STEM is contagious for students in biology, chemistry, and physics classes. Science Advances, 3(8), e1700046.  https://doi.org/10.1126/sciadv.1700046 CrossRefGoogle Scholar
  77. Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21, 33–46.  https://doi.org/10.2307/749455 CrossRefGoogle Scholar
  78. Ho, H. Z., Senturk, D., Lam, A. G., Zimmer, J. M., Hong, S., Okamoto, Y., & Chiu, S. Y. (2000). The affective and cognitive dimensions of math anxiety: A cross-national study. Journal for Research in Mathematics Education, 31, 363–379.  https://doi.org/10.2307/749811 CrossRefGoogle Scholar
  79. Hopko, D. R. (2003). Confirmatory factor analysis of the math anxiety rating scale–revised. Educational and Psychological Measurement, 63(2), 336–351.  https://doi.org/10.1177/0013164402251041 #.CrossRefGoogle Scholar
  80. Hopko, D. R., Ashcraft, M. H., Gute, J., Ruggiero, K. J., & Lewis, C. (1998). Mathematics anxiety and working memory: Support for the existence of a deficient inhibition mechanism. Journal of Anxiety Disorders, 12, 343–355.  https://doi.org/10.1016/S0887-6185(98)00019-X CrossRefGoogle Scholar
  81. Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment, 10(2), 178–182.  https://doi.org/10.1177/1073191103010002008 #.CrossRefGoogle Scholar
  82. Hopko, D. R., McNeil, D. W., Gleason, P. J., & Rabalais, A. E. (2002). The emotional Stroop paradigm: Performance as a function of stimulus properties and self-reported mathematics anxiety. Cognitive Therapy and Research, 26(2), 157–166.  https://doi.org/10.1023/A:1014578218041 CrossRefGoogle Scholar
  83. Iben, M. F. (1991). Attitudes and mathematics. Comparative Education, 2(2), 135–151.  https://doi.org/10.1080/0305006910270203 #.CrossRefGoogle Scholar
  84. Iuculano, T., & Kadosh, R. C. (2014). Preliminary evidence for performance enhancement following parietal lobe stimulation in developmental dyscalculia. Frontiers in Human Neuroscience, 8, 38.  https://doi.org/10.3389/fnhum.2014.00038 CrossRefGoogle Scholar
  85. Jameson, M. M. (2013). The development and validation of the Children’s Anxiety in Math Scale. Journal of Psychoeducational Assessment, 31(4), 391–395.  https://doi.org/10.1177/0734282912470131 #.CrossRefGoogle Scholar
  86. Jameson, M. M. (2014). Contextual factors related to math anxiety in second-grade children. The Journal of Experimental Education, 82(4), 518–536.  https://doi.org/10.1080/00220973.2013.813367 #.CrossRefGoogle Scholar
  87. Jameson, M. M., & Fusco, B. R. (2014). Math anxiety, math self-concept, and math self-efficacy in adult learners compared to traditional undergraduate students. Adult Education Quarterly, 64(4), 306–322.  https://doi.org/10.1177/0741713614541461 #.CrossRefGoogle Scholar
  88. Jansen, B. R., Louwerse, J., Straatemeier, M., Van der Ven, S. H., Klinkenberg, S., & Van der Maas, H. L. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190–197.  https://doi.org/10.1016/j.lindif.2012.12.014 #.CrossRefGoogle Scholar
  89. Johns, M., Schmader, T., & Martens, A. (2005). Knowing is half the battle: Teaching stereotype threat as a means of improving women’s math performance. Psychological Science, 16(3), 175–179.  https://doi.org/10.1111/j.0956-7976.2005.00799.x CrossRefGoogle Scholar
  90. Kadosh, R. C., Dowker, A., Heine, A., Kaufmann, L., & Kucan, K. (2013). Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education, 2(2), 85–93.  https://doi.org/10.1016/j.tine.2013.04.001 CrossRefGoogle Scholar
  91. Kamann, M. P., & Wong, B. Y. (1994). Inducing adaptive coping self-statements in children with learning disabilities through self-instruction training. Journal of Learning Disabilities, 26(9), 630–638.  https://doi.org/10.1177/002221949302600913 CrossRefGoogle Scholar
  92. Kendler, K. S., Myers, J., & Prescott, C. A. (2002). The etiology of phobias: An evaluation of the stress-diathesis model. Archives of General Psychiatry, 59(3), 242–248.  https://doi.org/10.1001/archpsyc.59.3.242 CrossRefGoogle Scholar
  93. Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 157–175.  https://doi.org/10.1037/0278-7393.27.1.157 #.CrossRefGoogle Scholar
  94. Klumpp, H., Fitzgerald, D. A., Cook, E., Shankman, S. A., Angstadt, M., & Phan, K. L. (2014). Serotonin transporter gene alters insula activity to threat in social anxiety disorder. NeuroReport, 25(12), 926.  https://doi.org/10.1097/WNR.0000000000000210 CrossRefGoogle Scholar
  95. Krendl, A. C., Richeson, J. A., Kelley, W. M., & Heatherton, T. F. (2008). The negative consequences of threat: A functional magnetic resonance imaging investigation of the neural mechanisms underlying women's underperformance in math. Psychological Science, 19(2), 168–175.  https://doi.org/10.1111/j.1467-9280.2008.02063.x CrossRefGoogle Scholar
  96. Krinzinger, H., Kaufmann, L., Dowker, A., Thomas, G., Graf, M., Nuerk, H. C., & Willmes, K. (2007). German version of the math anxiety questionnaire (FRA) for 6-to 9-year-old children. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 35(5), 341–351.  https://doi.org/10.1024/1422-4917.35.5.341 #.CrossRefGoogle Scholar
  97. Krinzinger, H., Kaufmann, L., & Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psychoeducational Assessment, 27(3), 206–225.  https://doi.org/10.1177/0734282908330583 #.CrossRefGoogle Scholar
  98. Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS One, 10(6), e0130570.  https://doi.org/10.1371/journal.pone.0130570 #.CrossRefGoogle Scholar
  99. Lee, J. (2009). Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learning and Individual Differences, 19(3), 355–365.  https://doi.org/10.1016/j.lindif.2008.10.009 CrossRefGoogle Scholar
  100. Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J., & Gunderson, E. A. (2010). What counts in the development of young children's number knowledge? Developmental Psychology, 46(5), 1309.  https://doi.org/10.1037/a0019671 CrossRefGoogle Scholar
  101. Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135.  https://doi.org/10.1037/a0021276 CrossRefGoogle Scholar
  102. Lindskog, M., Winman, A., & Poom, L. (2017). Individual differences in nonverbal number skills predict math anxiety. Cognition, 159, 156–162.  https://doi.org/10.1016/j.cognition.2016.11.014 CrossRefGoogle Scholar
  103. Lyons, I. M., & Beilock, S. L. (2012a). When math hurts: Math anxiety predicts pain network activation in anticipation of doing math. PLoS One, 7(10), e48076.  https://doi.org/10.1371/journal.pone.0048076 CrossRefGoogle Scholar
  104. Lyons, I. M., & Beilock, S. L. (2012b). Mathematics anxiety: Separating the math from the anxiety. Cerebral Cortex, 22(9), 2102–2110.  https://doi.org/10.1093/cercor/bhr289 CrossRefGoogle Scholar
  105. Ma, X., & Kishor, N. (1997). Attitude toward self, social factors, and achievement in mathematics: A meta-analytic review. Educational Psychology Review, 9(2), 89–120.  https://doi.org/10.1023/A:1024785812050 CrossRefGoogle Scholar
  106. Ma, X., & Xu, J. (2004). The causal ordering of mathematics anxiety and mathematics achievement: A longitudinal panel analysis. Journal of Adolescence, 27(2), 165–179.  https://doi.org/10.1016/j.adolescence.2003.11.003 CrossRefGoogle Scholar
  107. Malanchini, M., Rimfeld, K., Shakeshaft, N. G., Rodic, M., Schofield, K., Selzam, S., et al. (2017). The genetic and environmental aetiology of spatial, mathematics and general anxiety. Scientific Reports, 7, 42218.  https://doi.org/10.1038/srep42218 CrossRefGoogle Scholar
  108. Maloney, E. A., Ansari, D., & Fugelsang, J. A. (2011). The effect of mathematics anxiety on the processing of numerical magnitude. The Quarterly Journal of Experimental Psychology, 64(1), 10–16.  https://doi.org/10.1080/17470218.2010.533278 #.CrossRefGoogle Scholar
  109. Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational effects of parents’ math anxiety on children’s math achievement and anxiety. Psychological Science, 26(9), 1480–1488.  https://doi.org/10.1177/0956797615592630 #.CrossRefGoogle Scholar
  110. Maloney, E. A., Risko, E. F., Ansari, D., & Fugelsang, J. (2010). Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition, 114(2), 293–297.  https://doi.org/10.1016/j.cognition.2009.09.013 #.CrossRefGoogle Scholar
  111. Maloney, E. A., Waechter, S., Risko, E. F., & Fugelsang, J. A. (2012). Reducing the sex difference in math anxiety: The role of spatial processing ability. Learning and Individual Differences, 22, 380–384.  https://doi.org/10.1016/j.lindif.2012.01.001 #.CrossRefGoogle Scholar
  112. Mattarella-Micke, A., Mateo, J., Kozak, M. N., Foster, K., & Beilock, S. L. (2011). Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety. Emotion, 11(4), 1000–1005.  https://doi.org/10.1037/a0023224 CrossRefGoogle Scholar
  113. Mazzocco, M. M. M., Hanich, L. B., & Noeder, M. M. (2012). Primary school age students’ spontaneous comments about math reveal emerging dispositions linked to later mathematics achievement. Child Development Research, 170, 310.  https://doi.org/10.1155/2012/170310 CrossRefGoogle Scholar
  114. McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research, 45(8), 1027–1035.  https://doi.org/10.1016/j.jpsychires.2011.03.006 CrossRefGoogle Scholar
  115. McLean, J. F., & Rusconi, E. (2014). Mathematical difficulties as decoupling of expectation and developmental trajectories. Frontiers in Human Neuroscience, 8, 44.  https://doi.org/10.3389/fnhum.2014.00044 CrossRefGoogle Scholar
  116. McLeod, D. B., Metzger, W., & Craviotto, C. (1989). Comparing experts’ and novices’ affective reactions to mathematical problem solving: An exploratory study. In G. Kaiser (Ed.), Proceedings of the Thirteenth International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 296–303).  https://doi.org/10.1007/978-3-319-62597-3 CrossRefGoogle Scholar
  117. McMullan, M., Jones, R., & Lea, S. (2012). Math anxiety, self-efficacy, and ability in British undergraduate nursing students. Research in Nursing & Health, 35(2), 178–186.  https://doi.org/10.1002/nur.21460 CrossRefGoogle Scholar
  118. Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its influence on young adolescents’ course enrollment intentions and performance in mathematics. Journal of Educational Psychology, 82(1), 60–70.  https://doi.org/10.1037/0022-0663.82.1.60 #.CrossRefGoogle Scholar
  119. Melhuish, E. C., Sylva, K., Sammons, P., Siraj-Blatchford, I., Taggart, B., Phan, M., & Malin, A. (2008). Preschool influences on mathematics achievement. Science, 321(5893), 1161–1162.  https://doi.org/10.1126/science.1158808 CrossRefGoogle Scholar
  120. Micoulaud-Franchi, J. A., Mcgonigal, A., Lopez, R., Daudet, C., Kotwas, I., & Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiologie Clinique/Clinical Neurophysiology, 45(6), 423–433.  https://doi.org/10.1016/j.neucli.2015.10.077 CrossRefGoogle Scholar
  121. Mizala, A., Martínez, F., & Martínez, S. (2015). Pre-service elementary school teachers' expectations about student performance: How their beliefs are affected by their mathematics anxiety and student's gender. Teaching and Teacher Education, 50, 70–78.  https://doi.org/10.1016/j.tate.2015.04.006 #.CrossRefGoogle Scholar
  122. Moore, A. M., Rudig, N. O., & Ashcraft, M. H. (2014). Affect, motivation, working memory, and mathematics. In R. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.004 CrossRefGoogle Scholar
  123. Mulhern, F., & Rae, G. (1998). Development of a shortened form of the Fennema-Sherman Mathematics Attitudes Scales. Educational and Psychological Measurement, 58(2), 295–306.  https://doi.org/10.1177/0013164498058002012 #.CrossRefGoogle Scholar
  124. Neale, D. C. (1969). The role of attitudes in learning mathematics. The Arithmetic Teacher, 16(8), 631–640.Google Scholar
  125. Newson, L., & Richerson, P. J. (2009). Why do people become modern? A Darwinian explanation. Population and Development Review, 35(1), 117–158.  https://doi.org/10.1111/j.1728-4457.2009.00263.x CrossRefGoogle Scholar
  126. Ninaus, M., Pereira, G., Stefitz, R., Prada, R., Paiva, A., Neuper, C., & Wood, G. (2015). Game elements improve performance in a working memory training task. International Journal of Serious Games, 2(1), 3–16.CrossRefGoogle Scholar
  127. Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2014). Less precise representation of numerical magnitude in high math-anxious individuals: An ERP study of the size and distance effects. Biological Psychology, 103, 176–183.  https://doi.org/10.1016/j.biopsycho.2014.09.004 CrossRefGoogle Scholar
  128. Oakhill, J., Cain, K., & Elbro, C. (2014). Understanding and teaching reading comprehension. A handbook. London: Routledge.  https://doi.org/10.1080/02667363.2015.1052233 CrossRefGoogle Scholar
  129. Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted students. Contemporary Educational Psychology, 21(4), 325–344.  https://doi.org/10.1006/ceps.1996.0025 #.CrossRefGoogle Scholar
  130. Pajares, F., & Graham, L. (1999). Self-efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24(2), 124–139.CrossRefGoogle Scholar
  131. Pajares, F., & Kranzler, J. (1995). Self-efficacy beliefs and general mental ability in mathematical problem-solving. Contemporary Educational Psychology, 20(4), 426–443.  https://doi.org/10.1006/ceps.1995.1029 CrossRefGoogle Scholar
  132. Park, D., Ramirez, G., & Beilock, S. L. (2014). The role of expressive writing in math anxiety. Journal of Experimental Psychology: Applied, 20(2), 103.  https://doi.org/10.1037/xap0000013 CrossRefGoogle Scholar
  133. Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: University of London, Institute of Education National Research and Development Centre for Adult Literacy and Numeracy.Google Scholar
  134. Pasqualotto, A. (2016). Transcranial random noise stimulation benefits arithmetic skills. Neurobiology of Learning and Memory, 133, 7–12.  https://doi.org/10.1016/j.nlm.2016.05.004 CrossRefGoogle Scholar
  135. Piccolo, L. R., Giacomoni, C. H., Júlio-Costa, A., Oliveira, S., Zbornika, J., Haase, V. G., & Salles, J. F. (2017). Reading anxiety in L1: Reviewing the concept. Early Childhood Education Journal, 4, 537–543.  https://doi.org/10.1177/0022219407310838 CrossRefGoogle Scholar
  136. Plake, B. S., & Parker, C. S. (1982). The development and validation of a revised version of the Mathematics Anxiety Rating Scale. Educational and Psychological Measurement, 42(2), 551–557.  https://doi.org/10.1177/001316448204200218 #.CrossRefGoogle Scholar
  137. Pletzer, B., Wood, G., Moeller, K., Nuerk, H. C., & Kerschbaum, H. H. (2010). Predictors of performance in a real-life statistics examination depend on the individual cortisol profile. Biological Psychology, 85(3), 410–416.  https://doi.org/10.1016/j.biopsycho.2010.08.015 CrossRefGoogle Scholar
  138. Ramirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science, 331(6014), 211–213.  https://doi.org/10.1126/science.1199427 Erratum in: Science. (2014), 344(6180), 151.CrossRefGoogle Scholar
  139. Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100.  https://doi.org/10.1016/j.jecp.2015.07.014 #.CrossRefGoogle Scholar
  140. Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187–202 #.CrossRefGoogle Scholar
  141. Räsänen, P. (2015). Computer-assisted interventions on basic number skills. In Kadosh, R. C., & Dowker, A. (Eds.). The Oxford handbook of numerical cognition. Oxford Library of Psychology. Oxford: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.63
  142. Rattan, A., Good, C., & Dweck, C. S. (2012). “It’s ok—Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. Journal of Experimental Social Psychology, 48(3), 731–737.  https://doi.org/10.1016/j.jesp.2011.12.012 CrossRefGoogle Scholar
  143. Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, 19(6), 551–554.  https://doi.org/10.1037/h0033456 #.CrossRefGoogle Scholar
  144. Rubinsten, O., & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions, 6(1), 46.  https://doi.org/10.1186/1744-9081-6-46 CrossRefGoogle Scholar
  145. Sakolsky, D. J., McCracken, J. T., & Nurmi, E. L. (2012). Genetics of pediatric anxiety disorders. Child and Adolescent Psychiatric Clinics of North America, 21, 479–500.  https://doi.org/10.1016/j.chc.2012.05.010 CrossRefGoogle Scholar
  146. Sandman, R. S. (1980). The mathematics attitude inventory: Instrument and user’s manual. Journal for Research in Mathematics Education, 11, 148–149.  https://doi.org/10.2307/748906 #.CrossRefGoogle Scholar
  147. Sarkar, A., Dowker, A., & Kadosh, R. C. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605–16610.  https://doi.org/10.1523/JNEUROSCI.3129-14.2014 #.CrossRefGoogle Scholar
  148. Satake, E., & Amato, P. P. (1995). Mathematics anxiety and achievement among Japanese elementary school students. Educational and Psychological Measurement, 55(6), 1000–1007.  https://doi.org/10.1177/0013164495055006009 #.CrossRefGoogle Scholar
  149. Schoenberg, P. L., & David, A. S. (2014). Biofeedback for psychiatric disorders: A systematic review. Applied Psychophysiology and Biofeedback, 39(2), 109–135.  https://doi.org/10.1007/s10484-014-9246-9 CrossRefGoogle Scholar
  150. Sherman, J. (1982). Continuing in mathematics: A longitudinal study of the attitudes of high school girls. Psychology of Women Quartely, 7(3), 272–281.  https://doi.org/10.1111/j.1471-6402.1983.tb00825.x #.CrossRefGoogle Scholar
  151. Sibley, M. H., Campez, M., Perez, A., Morrow, A. S., Merrill, B. M., Altszuler, A. R., et al. (2016). Parent management of organization, time management, and planning deficits among adolescents with ADHD. Journal of Psychopathology and Behavioral Assessment, 38(2), 216–228.  https://doi.org/10.1007/s10862-015-9515-9 CrossRefGoogle Scholar
  152. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545–560.  https://doi.org/10.1037/a0014239 CrossRefGoogle Scholar
  153. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28.  https://doi.org/10.1006/jesp.1998.1373 CrossRefGoogle Scholar
  154. Stankov, L. (2010). Unforgiving Confucian culture: A breeding ground for high academic achievement, test anxiety and self-doubt? Learning and Individual Differences, 20(6), 555–563.  https://doi.org/10.1016/j.lindif.2010.05.003 CrossRefGoogle Scholar
  155. Stoet, G., & Geary, D. C. (2012). Can stereotype threat explain the gender gap in mathematics performance and achievement? Review of General Psychology, 16(1), 93–102.  https://doi.org/10.1037/a0026617 CrossRefGoogle Scholar
  156. Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within- and across-nation assessment of 10 years of PISA data. PLoS One, 8(3), e57988.  https://doi.org/10.1371/journal.pone.0057988 CrossRefGoogle Scholar
  157. Stoet, G., & Geary, D. C. (2016). Challenges for determining the causal effects between social behavior and testosterone. Proceedings of the National Academy of Sciences, 113(5), E499–E499.  https://doi.org/10.1073/pnas.1522422113 CrossRefGoogle Scholar
  158. Strauss, S., & Ziv, M. (2012). Teaching is a natural cognitive ability for humans. Mind, Brain, and Education, 6(4), 186–196.  https://doi.org/10.1111/j.1751-228X.2012.01156.x CrossRefGoogle Scholar
  159. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, A. (2013a). Abnormal error monitoring in math-anxious individuals: Evidence from error-related brain potentials. PLoS One, 8, e81143 doi:10. 1371/journal.pone.0081143.CrossRefGoogle Scholar
  160. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, A. (2013b). Mathematical anxiety effects on simple arithmetic processing efficiency: An event-related potential study. Biological Psychology, 94(3), 517–526.  https://doi.org/10.1016/j.biopsycho.2013.09.012 CrossRefGoogle Scholar
  161. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, A. (2014). Reactive recruitment of attentional control in math anxiety: An ERP study of numeric conflict monitoring and adaptation. PLoS One, 9, e99579.  https://doi.org/10.1371/journal.pone.0099579 CrossRefGoogle Scholar
  162. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, A. (2015). Attentional bias in high math-anxious individuals: Evidence from an emotional Stroop task. Frontiers in Psychology, 6, 1577.  https://doi.org/10.3389/fpsyg.2015.01577 CrossRefGoogle Scholar
  163. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016). Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective, & Behavioral Neuroscience, 16(1), 3–22.  https://doi.org/10.3758/s13415-015-0370-7 CrossRefGoogle Scholar
  164. Suinn, R. M., & Edwards, R. (1982). The measurement of mathematics anxiety: The mathematics anxiety rating scale for adolescents—MARS-A. Journal of Clinical Psychology, 38(3), 576–580.  https://doi.org/10.1002/1097-4679(198207)38:3<576::AID-JCLP2270380317>3.0.CO;2-V #.CrossRefGoogle Scholar
  165. Suinn, R. M., Taylor, S., & Edwards, R. W. (1988). Suinn mathematics anxiety rating scale for elementary school students (MARS-E): Psychometric and normative data. Educational and Psychological Measurement, 48(4), 979–986.  https://doi.org/10.1177/0013164488484013 #.CrossRefGoogle Scholar
  166. Suinn, R. M., & Winston, E. H. (2003). The mathematics anxiety rating scale, a brief version: Psychometric data. Psychological Reports, 92(1), 167–173.  https://doi.org/10.2466/pr0.2003.92.1.167 #.CrossRefGoogle Scholar
  167. Supekar, K., Iuculano, T., Chen, L., & Menon, V. (2015). Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring. Journal of Neuroscience, 35(36), 12574–12583.  https://doi.org/10.1523/JNEUROSCI.0786-15.2015 #.CrossRefGoogle Scholar
  168. Swars, S. L., Daane, C. J., & Giesen, J. (2006). Mathematics anxiety and mathematics teacher efficacy: What is the relationship in elementary preservice teachers. School Science and Mathematics, 106, 306–315.  https://doi.org/10.1111/j.1949-8594.2006.tb17921.x CrossRefGoogle Scholar
  169. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitie load theory. New York: Springer.  https://doi.org/10.1007/978-1-4419-8126-4 CrossRefGoogle Scholar
  170. Tahan, M. (1993). The man who counted: A collection of mathematical adventures (Vol. 34, p. 102). New York: WW Norton & Company.  https://doi.org/10.1093/teamat/hru023 CrossRefGoogle Scholar
  171. Tan, J. B., & Yates, S. (2011). Academic expectations as sources of stress in Asian students. Social Psychology of Education, 14(3), 389–407.  https://doi.org/10.1007/s11218-010-9146-7 CrossRefGoogle Scholar
  172. Thomas, G., & Dowker, A. (2000). Mathematics anxiety and related factors in young children. In Proceedings of the British Psychological Society Developmental Section Conference. Bristol: British Psychological Society #.Google Scholar
  173. Tooke, D. J., & Lindstrom, L. C. (1998). Effectiveness of a mathematics methods course in reducing math anxiety of preservice elementary teachers. School Science and Mathematics, 98(3), 136–139.  https://doi.org/10.1111/j.1949-8594.1998.tb17406.x CrossRefGoogle Scholar
  174. Tsui, J. M., & Mazzocco, M. M. (2006). Effects of math anxiety and perfectionism on timed versus untimed math testing in mathematically gifted sixth graders. Roeper Review, 29(2), 132–139.  https://doi.org/10.1080/02783190709554397 #.CrossRefGoogle Scholar
  175. Turner, J. C., Midgley, C., Meyer, D. K., Gheen, M., Anderman, E. M., Kang, Y., & Patrick, H. (2002). The classroom environment and students’ reports of avoidance strategies in mathematics: A multimethod study. Journal of Educational Psychology, 94, 88–106.  https://doi.org/10.1037/0022-0663.94.1.88 CrossRefGoogle Scholar
  176. Van Houtem, C. M. H. H., Laine, M. L., Boomsma, D. I., Ligthart, L., Van Wijk, A. J., & De Jongh, A. (2013). A review and meta-analysis of the heritability of specific phobia subtypes and corresponding fears. Journal of Anxiety Disorders, 27(4), 379–388.  https://doi.org/10.1016/j.janxdis.2013.04.007 CrossRefGoogle Scholar
  177. Vukovic, R. K., Roberts, S. O., & Green Wright, L. (2013). From parental involvement to children's mathematical performance: The role of mathematics anxiety. Early Education & Development, 24(4), 446–467.  https://doi.org/10.1080/10409289.2012.693430 CrossRefGoogle Scholar
  178. Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: A 3 year examination. Intelligence, 38(4), 412–423.  https://doi.org/10.1016/j.intell.2010.04.006 CrossRefGoogle Scholar
  179. Wang, Z., Hart, S. A., Kovas, Y., Lukowski, S., Soden, B., Thompson, L. A., et al. (2014). Who is afraid of math? Two sources of genetic variance for mathematical anxiety. Journal of Child Psychology and Psychiatry, 55(9), 1056–1064.  https://doi.org/10.1111/jcpp.12224 #.CrossRefGoogle Scholar
  180. Wigfield, A., & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. Journal of Educational Psychology, 80(2), 210.  https://doi.org/10.1037/0022-0663.80.2.210 #.CrossRefGoogle Scholar
  181. Wittman, T. K., Marcinkiewicz, H. R., & Hamodey-Douglas, S. (1998, February). Computer assisted automatization of multiplication facts reduces mathematics anxiety in elementary school children. In Maushak, N. J., Schlosser, C., Lloyd, T. N., Simonson, M. (Eds). Selected research and development presentations at the National Convention of the Association for Educational Communications and Technology (AECT) Sponsored by the Research and Theory Division. https://www.learntechlib.org/p/86921/; https://files.eric.ed.gov/fulltext/ED423869.pdf
  182. Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173–180.  https://doi.org/10.1080/02568540109594958 CrossRefGoogle Scholar
  183. Wong, H. M., & Goh, E. C. (2014). Dynamics of ADHD in familial contexts: Perspectives from children and parents and implications for practitioners. Social Work in Health Care, 53(7), 601–616.  https://doi.org/10.1080/00981389.2014.924462 CrossRefGoogle Scholar
  184. Wood, G., Pinheiro-Chagas, P., Júlio-Costa, A., Micheli, A. R., Krinzinger, H., Kaufmann, L., et al. (2012). Math Anxiety Questionnaire: Similar latent structure in Brazilian and German school children. Child Development Research, 610192.  https://doi.org/10.1155/2012/610192 #.CrossRefGoogle Scholar
  185. Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menon, V. (2012). Math anxiety in second and third graders and its relation to mathematics achievement. Frontiers in Psychology, 3.  https://doi.org/10.3389/fpsyg.2012.00162 #.
  186. Wu, S. S., Chen, L., Battista, C., Watts, A. K. S., Willcutt, E. G., & Menon, V. (2017). Distinct influences of affective and cognitive factors on children’s non-verbal and verbal mathematical abilities. Cognition, 166, 118–129.  https://doi.org/10.1016/j.cognition.2017.05.016 #.CrossRefGoogle Scholar
  187. Wu, S. S., Willcutt, E. G., Escovar, E., & Menon, V. (2014). Mathematics achievement and anxiety and their relation to internalizing and externalizing behaviors. Journal of Learning Disabilities, 47(6), 503–514.  https://doi.org/10.1177/0022219412473154 #.CrossRefGoogle Scholar
  188. Young, C. B., Wu, S. S., & Menon, V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492–501.  https://doi.org/10.1177/0956797611429134 CrossRefGoogle Scholar
  189. Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., et al. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61–89.  https://doi.org/10.3102/0034654312436980 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Vitor Geraldi Haase
    • 1
    Email author
  • Amanda Paola Lobo Guimarães
    • 2
  • Guilherme Wood
    • 3
  1. 1.Departamento de Psicologia, Faculdade de Filosofia e Ciências HumanasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of PsychologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Institute of PsychologyKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations