Advertisement

The Language Dimension of Mathematical Difficulties

  • Susanne PredigerEmail author
  • Kirstin Erath
  • Elisabeth Moser Opitz
Chapter

Abstract

Many empirical studies have shown that students’ mathematical difficulties are often connected to language factors. In this chapter, we discuss this issue from different perspectives and with regard to different groups of students. First, differences between everyday and academic language on word, sentence, and text/discourse level and their implications for mathematics learning processes are discussed. Secondly, it is described how language factors affect the achievement of specific groups of students: second-language learners, students with learning disabilities in mathematics and reading, and students with specific language impairment. Thirdly, important language dimensions for the mathematics learning focusing on the use of language as a learning medium and discourse practices are presented. Finally, it is concluded that instructional approaches seem to become most effective for supporting mathematics learning when they provide learning opportunities especially for the discourse practices of explaining meanings of mathematical concepts and operations and for describing general pattern.

Keywords

Discourse practices Second-language learners Learning disabilities in mathematics and reading Language impairment 

References

  1. Abedi, J., & Lord, C. (2001). The language factor in mathematics tests. Applied Measurement in Education, 14(3), 219–234.Google Scholar
  2. Alt, M., Arizmendi, G. D., & Beal, C. R. (2014). The relationship between mathematics and language: Academic implications for children with specific language impairment and English language learners. Language, Speech, and Hearing Services in Schools, 45, 220–233.Google Scholar
  3. Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46(6), 549–569.Google Scholar
  4. Bailey, A. (2007). The language demands of schools. Putting academic English to the test. New Haven, CT: Yale.Google Scholar
  5. Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education. ZDM – International Journal on Mathematics Education, 47(7), 1047–1065.Google Scholar
  6. Barwell, R. (Ed.). (2009). Multilingualism in mathematics classrooms. Bristol et al.: Multilingual Matters.Google Scholar
  7. Barwell, R. (2012). Discursive demands and equity in second language mathematics classroom. In B. Herbel-Eisenmann, J. Choppin, D. Wagner, & D. Pimm (Eds.), Equity in discourse for mathematics education. Theories, practices, and politics (pp. 147–163). Dordrecht, the Netherlands: Springer.Google Scholar
  8. Barwell, R. (2014). Language background in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 331–336). Dordrecht, the Netherlands: Springer.Google Scholar
  9. Barwell, R., Clarkson, P., Halai, A., Kazima, M., Moschkovich, J., Planas, N., et al. (2016). Mathematics education and language diversity: The 21st ICMI study. Dordrecht, the Netherlands: Springer.Google Scholar
  10. Branum-Martin, L., Fletcher, J. M., & Stuebing, K. K. (2012). Classification and identification of reading and math disabilities: The special case of comorbidity. Journal of Learning Disabilities, 46, 490–499.Google Scholar
  11. Clarkson, P. (2006). Australian Vietnamese students learning mathematics: High ability bilinguals and their use of their languages. Educational Studies in Mathematics, 64(2), 191–215.Google Scholar
  12. Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. The Journal of the Learning Sciences, 10(1&2), 113–163.Google Scholar
  13. Cummins, J. (2000). Language, power and pedagogy. Clevedon, UK: Multi Lingual Matters.Google Scholar
  14. Deutsches Institut für Medizinische Dokumentation und Information. (2015). Umschriebene Entwicklungsstörungen schulischer Fertigkeiten. http://www.icd-code.de/icd/code/F81.2.html. [25.12.2016].
  15. DfEE – Department for Education and Employment. (2000). The National Numeracy Strategy: Mathematical Vocabulary. London: Department for Education and Employment. http://www.belb.org.uk/Downloads/num_mathematics_vocabulary.pdf. [23.1.2016].
  16. Dirks, E., Spyer, G., van Lieshout, E. C. D. M., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41, 460–473.Google Scholar
  17. Donlan, C. (2003). The early numeracy of children with specific language impairments. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. 337–358). Mahwah, NJ: Routledge.Google Scholar
  18. Donlan, C. (2015). Linguistic factors in the development of basic calculation. In S. J. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 346–356). London: Routledge.Google Scholar
  19. Donlan, C., Cowan, R., Newton, E. J., & Lloyd, D. (2007). The role of language in mathematical development: Evidence from children with specific language impairments. Cognition, 103, 23–33.Google Scholar
  20. Durkin, K., Mok, P. L. H., & Conti-Ramsden, G. (2015). Core subjects at the end of primary school: Identifying and explaining relative strengths of children with specific language impairment (SLI). International Journal of Language & Communication Disorder, 50, 226–240.Google Scholar
  21. Echevarria, J., Vogt, M. E., & Short, D. (2010). The SIOP model for teaching mathematics to English learners. Boston: Pearson.Google Scholar
  22. Erath, K. (2017a). Mathematisch diskursive Praktiken des Erklärens. Rekonstruktion von Unterrichtsgesprächen in unterschiedlichen Mikrokulturen.Wiesbaden: Springer.Google Scholar
  23. Erath, K. (2017b). Talking about conceptual knowledge. Case study on challenges for students with low language proficiency. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Volume 2, S. 321–328). Singapore: PME.Google Scholar
  24. Erath, K., Prediger, S., Quasthoff, U., & Heller, V. (in press). Discourse competence as important part of academic language proficiency in mathematics classrooms: The case of explaining to learn and learning to explain. Educational Studies in Mathematics.Google Scholar
  25. Fazio, B. B. (1996). Mathematical abilities of children with specific language impairment: A 2-year follow-up. Journal of Speech and Hearing Research, 39, 839–849.Google Scholar
  26. Fazio, B. B. (1999). Arithmetic calculation, short-term memory, and language performance with specific language impairment: A 5-year follow-up. Journal of Speech, Language, and Hearing Research, 42, 420–431.Google Scholar
  27. Fuchs, L. S., Geary, D. C., Fuchs, D., Compton, D. L., & Hamlett, C. L. (2016). Pathways to third-grade calculation versus word-reading competence: Are they more alike or different? Child Development, 87(2), 558–567.Google Scholar
  28. Gibbons, P. (2002). Scaffolding language, scaffolding learning. Teaching second language learners in the mainstream classroom. Portsmouth, UK: Heinemann.Google Scholar
  29. Gunn, S., & Wyatt-Smith, C. (2011). Learning difficulties, literacy and numeracy: Conversations across the field. In C. Wyatt-Smith, J. Elkins, & S. Gunn (Eds.), Multiple perspectives on difficulties in learning literacy and numeracy (pp. 17–48). Dordrecht, the Netherlands: Springer.Google Scholar
  30. Haag, N., Heppt, B., Roppelt, A., & Stanat, P. (2015). Linguistic simplification of mathematics items: Effects for language minority students in Germany. European Journal of Psychology of Education, 30(2), 145–167.Google Scholar
  31. Haag, N., Heppt, B., Stanat, P., Kuhl, P., & Pant, H. A. (2013). Second language learners’ performance in mathematics: Disentangling the effects of academic language features. Learning and Instruction, 28(1), 24–34.Google Scholar
  32. Halliday, M. A. K. (1974). Some aspects of sociolinguistics. Interactions between linguistics and mathematical education symposium. Paris: UNESCO.Google Scholar
  33. Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge. The case of mathematics. Hillsdale, MI: Lawrence Erlbaum.Google Scholar
  34. Hirsch, E. D. (2003). Reading comprehension requires knowledge – Of words and the world. Scientific insights into the fourth-grade slump and the Nation’s stagnant comprehension scores. American Educator, 4(1), 10–44.Google Scholar
  35. Jorgensen, R. (2011). Language, culture and learning mathematics: A Bourdieuian analysis of indigenous learning. In C. Wyatt-Smith, J. Elkins, & S. Gunn (Eds.), Multiple perspectives on difficulties in learning literacy and numeracy (pp. 315–329). Dordrecht, the Netherlands: Springer.Google Scholar
  36. Kempert, S., Saalbach, H., & Hardy, I. (2011). Cognitive benefits and costs of bilingualism in elementary school students: The case of mathematical word problems. Journal of Educational Psychology, 103, 547–561.Google Scholar
  37. Klein, E., Bahnmueller, J., Mann, A., Pixner, S., Kaufmann, L., Nuerk, H.-C., & Moeller, K. (2013). Language influences on numerical development—Inversion effects on multi-digit number processing. Frontiers in Psychology, 4, 1–6.Google Scholar
  38. Krinzinger, H., Gregoire, J., Desoete, A., Kaufmann, L., Nuerk, H.-C., & Willmes, K. (2011). Differential language effects on numerical skills in second grade. Journal of Cross-Cultural Psychology, 42(4), 614–629.Google Scholar
  39. Lampert, M., & Cobb, P. (2003). Communication and learning in the mathematics classroom. In J. Kilpatrick & D. Shifter (Eds.), Research companion to the NCTM standards (pp. 237–249). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  40. Mann Koepke, K., & Miller, B. (2013). At the intersection of math and reading disabilities: Introduction to the special issue. Journal of Learning Disabilities, 46, 483–489.Google Scholar
  41. Miura, I. T., Okamoto, Y., Kim, C. C., Steere, M., & Fayol, M. (1993). First grader’s cognitive representation of number and understanding of place value: Cross-national comparisons – France, Japan, Korea, Sweden and the United States. Journal of Educational Psychology, 85, 24–30.Google Scholar
  42. Moll, K., Göbel, S. M., Gooch, D., Landerl, K., & Snowling, M. J. (2016). Cognitive risk factors for specific learning disorder: Processing speed, temporal processing, and working memory. Journal of Learning Disabilities, 49, 272–281.Google Scholar
  43. Morek, M., & Heller, V. (2012). Bildungssprache. Kommunikative, epistemische, soziale und interaktive Aspekte ihres Gebrauchs. Zeitschrift für Angewandte Linguistik, 57(1), 67–101.Google Scholar
  44. Morgan, C., Craig, T., Schütte, M., & Wagner, D. (2014). Language and communication in mathematics education: An overview of research in the field. ZDM – Mathematics Education, 46(6), 843–853.Google Scholar
  45. Moschkovich, J. (2010). Recommendations for research on language and mathematics education. In J. Moschkovich (Ed.), Language and mathematics education (pp. 1–28). Charlotte, NC: Information Age.Google Scholar
  46. Moschkovich, J. (2013). Principles and guidelines for equitable mathematics teaching practices and materials for English language learners. Journal of Urban Mathematics Education, 6(1), 45–57.Google Scholar
  47. Moschkovich, J. (2015). Academic literacy in mathematics for English learners. Journal of Mathematical Behaviour, 40(A), 43–62.Google Scholar
  48. Moser Opitz, E., Ruggerio, D., & Wüest, P. (2010). Verbale Zählkompetenzen und Mehrsprachigkeit: Eine Studie mit Kindergartenkindern. Psychologie in Erziehung und Unterricht, 57, 161–174.Google Scholar
  49. Norén, E. (2015). Agency and positioning in a multilingual mathematics classroom. Educational Studies in Mathematics, 89(2), 167–184.Google Scholar
  50. Nys, J., Content, A., & Leybaert, J. (2013). Impact of language abilities on exact and approximate number skills development: Evidence from children with specific language impairment. Journal of Speech, Language, and Hearing Research, 56, 956–970.Google Scholar
  51. Paetsch, J., Felbrich, A., & Stanat, P. (2015). Der Zusammenhang von sprachlichen und mathematischen Kompetenzen bei Kindern mit Deutsch als Zweitsprache. Zeitschrift für Pädagogische Psychologie, 29(1), 19–29.Google Scholar
  52. Petrill, S., Logan, J., Hart, S., Vincent, P., Thompson, L., Kovas, Y., et al. (2012). Math fluency is etiologically distinct from untimed math performance, decoding fluency, and untimed reading performance: Evidence from a twin study. Journal of Learning Disabilities, 45(4), 371–381.Google Scholar
  53. Pimm, D. (1987). Speaking mathematically. Communication in mathematics classroom. London & New York: Routledge/Keagan Paul.Google Scholar
  54. Planas, N. (2014). One speaker, two languages: Learning opportunities in the mathematics classroom. Educational Studies in Mathematics, 87(1), 51–66.Google Scholar
  55. Pöhler, B., & Prediger, S. (2015). Intertwining lexical and conceptual learning trajectories – A design research study on dual macro-scaffolding towards percentages. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1697–1722.Google Scholar
  56. Pöhler, B., Prediger, S., & Neugebauer, P. (2017). Content- and language integrated learning: A field experiment for percentages. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Annual Meeting of the International Group for the Psychology of Mathematics Education (PME 41) (Vol. 4, pp. 73–80). Singapore: PME.Google Scholar
  57. Prediger, S. (2016). Wer kann es auch erklären? Sprachliche Lernziele identifizieren und verfolgen. Mathematik differenziert, 7(2), 6–9.Google Scholar
  58. Prediger, S., Clarkson, P., & Bose, A. (2016). Purposefully relating multilingual registers: Building theory and teaching strategies for bilingual learners based on an integration of three traditions. In R. Barwell, P. Clarkson, A. Halai, M. Kazima, J. Moschkovich, N. Planas, M. Setati-Phakeng, P. Valero, & M. Villavicencio (Eds.), Mathematics education and language diversity: The 21st ICMI study (pp. 193–215). Cham et al.: Springer.Google Scholar
  59. Prediger, S., Erath, K., & Moser Opitz, E. (2018). Language challenges for students with mathematical difficulties – An overview on research results and instructional approaches. Online-Manuscript, Dortmund. http://www.mathematik.uni-dortmund.de/~prediger/veroeff/18-PredErathMoser-MathDifficultiesLanguage_Web_Manuscript.pdf (last accessed Jugts, 27, 2018)
  60. Prediger, S., & Wessel, L. (2013). Fostering German language learners’ constructions of meanings for fractions – Design and effects of a language- and mathematics-integrated intervention. Mathematics Education Research Journal, 25(3), 435–456.Google Scholar
  61. Prediger, S., Wilhelm, N., Büchter, A., Gürsoy, E., & Benholz, C. (2018). Language proficiency and mathematics achievement – Empirical study of language-induced obstacles in a high stakes test, the central exam ZP10. (Translation of the German article Sprachkompetenz und Mathematikleistung – Empirische Untersuchung sprachlich bedingter Hürden in den Zentralen Prüfungen 10, JMD 35(1), Journal für Mathematik-Didaktik, 39(3).  https://doi.org/10.1007/s13138-018-0126-3.Google Scholar
  62. Quasthoff, U. (2011). Diskurs- und Textfähigkeiten. Kulturelle Ressourcen ihres Erwerbs. In L. Hoffmann, K. Leimbrink, & U. Quasthoff (Eds.), Die Matrix der menschlichen Entwicklung (pp. 210–251). Berlin, Germany: de Gruyter.Google Scholar
  63. Reljić, G., Ferring, D., & Martin, R. (2015). A meta-analysis on the effectiveness of bilingual programs in Europe. Review of Educational Research, 85(1), 92–128.  https://doi.org/10.3102/0034654314548514 Google Scholar
  64. Rhöm, A., Starke, A., & Ritterfeld, U. (2017). Die Rolle von Arbeitsgedächtnis und Sprachkompetenz für den Erwerb mathematischer Basiskompetenzen im Vorschulalter. Psychologie in Erziehung und Unterricht, 64(2), 81–93. https://doi.org/10.2378/peu2016.art26d Google Scholar
  65. Riccomini, P. J., Smith, G. W., Hughes, E. M., & Fries, K. M. (2015). The language of mathematics. The importance of teaching and learning mathematical vocabulary. Reading & Writing Quarterly, 31(3), 235–252.Google Scholar
  66. Ritterfeld, U., Starke, A., Röhm, A., Latschinske, S., Wittich, C., & Moser Opitz, E. (2013). Über welche Strategien verfügen Erstklässler mit Sprachstörungen beim Lösen mathematischer Aufgaben? Zeitschrift für Heilpädagogik, 64(4), 136–143.Google Scholar
  67. Scherer, P., Beswick, K., Deblois, L., Healy, L., & Moser Opitz, E. (2016). Assistance for students with mathematical learning difficulties? ZDM – Mathematics Education, 48, 633–649.Google Scholar
  68. Schindler, V., Moser Opitz, E., Cadonau-Bieler, M., & Ritterfeld, U. (in press). Überprüfung und Förderung des mathematischen Fachwortschatzes der Grundschulmathematik – eine empirische Studie. Journal für Mathematikdidaktik.  https://doi.org/10.1007/s13138-018-0135-2
  69. Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  70. Schröder, A., & Ritterfeld, U. (2015). Children with specific language impairment (SLI) need qualitatively enriched interactions to successfully partake in mathematics education. International Journal of Technology and Inclusive Education, 4, 574–582.Google Scholar
  71. Secada, W. G. (1992). Race, ethnicity, social class, language and achievement in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 623–660). New York: Macmillan.Google Scholar
  72. Short, D. J. (2017). How to integrate content and language learning effectively for English language learners. EURASIA Journal of Mathematics, Science and Technology Education, 13(7b), 4237–4260.Google Scholar
  73. Smit, J. (2013). Scaffolding language in multilingual mathematics classrooms. (PhD-Thesis), Freudenthal Institute, Utrecht.Google Scholar
  74. Snow, C. E., & Uccelli, P. (2009). The challenge of academic language. In D. R. Olson & N. Torrance (Eds.), The Cambridge handbook of literacy (pp. 112–133). Cambridge: Cambridge University Press.Google Scholar
  75. Swain, M. (1995). Three functions of output in second language learning. In G. Cook & B. Seidlhofer (Eds.), Principle and practice in applied linguistics: Studies in honour of H.G. Widdowson (pp. 125–144). Oxford: Oxford University Press.Google Scholar
  76. Thürmann, E., Vollmer, H., & Pieper, I. (2010). Language(s) of schooling: Focusing on vulnerable learners. Straßbourg, France: Council of Europe.Google Scholar
  77. Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge: Harvard University Press.Google Scholar
  78. Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability. Journal of Learning Disabilities, 46, 500–516.Google Scholar
  79. Zuber, J., Pixner, S., Moeller, K., & Nuerk, H. C. (2009). On the language specificity of basic number processing: Transcoding in a language with inversion and its relation to working memory capacity. Journal of Experimental Child Psychology, 102, 60–67.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Susanne Prediger
    • 1
    Email author
  • Kirstin Erath
    • 1
  • Elisabeth Moser Opitz
    • 2
  1. 1.Institute for Development and Research in Mathematics Education (IEEM)TU DortmundDortmundGermany
  2. 2.Institute for Educational Studies, Department of Special Needs Education, Education and IntegrationUniversity of ZurichZurichSwitzerland

Personalised recommendations