Advertisement

Genetics of Dyscalculia 2: In Search of Endophenotypes

  • Maria Raquel S. CarvalhoEmail author
  • Vitor Geraldi Haase
Chapter

Abstract

In this chapter, we review the contribution of genetic syndromes to the understanding of developmental dyscalculia. The guideline for our review is the concept of cognitive endophenotype or intermediate cognitive phenotypes between the genetic/environmental etiologic level and the phenotypic level. Four potential endophenotypes are reviewed that could help clearing up genotypic-phenotypic correlations in dyscalculia: basic number processing, phonological processing, visuospatial and visuoconstructional processing, and working memory/executive functions. Endophenotypes are useful as a complexity-reducing strategy to understand dyscalculia subtypes and comorbidities. Evidence for a role of these endophenotypes comes from the association of dyscalculia and several genetic conditions. On the one hand, a verbal pattern of impairment is identified in Klinefelter syndrome. On the other hand, Turner, velocardiofacial, Williams, and fragile X syndromes present nonverbal difficulties in nonsymbolic number processing and visuospatial and visuoconstructional abilities. Impairments in working memory/executive functions are observed in virtually all conditions. We conclude reviewing the educational implications of the relatively specific patterns of impairments observed in these syndromes.

Keywords

Dyscalculia Math learning Math disability Gene Endophenotypes Genetic syndromes 

Notes

Acknowledgments

The authors were supported by CAPES, CNPq, FAPEMIG, and SUS-FAPEMIG.

References

  1. Abbeduto, L., McDuffie, A., & Thurman, A. J. (2014). The fragile X syndrome-autism comorbidity: What do we really know? Frontiers in Genetics, 5.  https://doi.org/10.3389/fgene.2014.00355
  2. Andersson, U. (2007). The contribution of working memory to children’s mathematical word problem solving. Applied Cognitive Psychology, 21(9), 1201–1216.  https://doi.org/10.1002/acp.1317 CrossRefGoogle Scholar
  3. Anobile, G., Castaldi, E., Turi, M., Tinelli, F., & Burr, D. C. (2016). Numerosity but not texture-density discrimination correlates with math ability in children. Developmental Psychology, 52(8), 1206.  https://doi.org/10.1037/dev0000155 CrossRefGoogle Scholar
  4. Ansari, D., Donlan, C., & Karmiloff-Smith, A. (2007). Typical and atypical development of visual estimation abilities. Cortex, 43(6), 758–768.CrossRefGoogle Scholar
  5. Antshel, K. M., Peebles, J., Abdul Sabur, N., Higgins, A. M., Roizen, N., Shprintzen, R., et al. (2008). Associations between performance on the Rey-Osterrieth Complex Figure and regional brain volumes in children with and without velocardiofacial syndrome. Developmental Neuropsychology, 33(5), 601–622.CrossRefGoogle Scholar
  6. Attout, L., Noël, M. P., Vossius, L., & Rousselle, L. (2017). Evidence of the impact of visuo-spatial processing on magnitude representation in 22q11. 2 microdeletion syndrome. Neuropsychologia, 99, 296–305.CrossRefGoogle Scholar
  7. Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.CrossRefGoogle Scholar
  8. Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.CrossRefGoogle Scholar
  9. Bailey, D. B., Raspa, M., Olmsted, M., & Holiday, D. B. (2008). Co-occurring conditions associated with FMR1 gene variations: Findings from a national parent survey. American Journal of Medical Genetics Part A, 146(16), 2060–2069.  https://doi.org/10.1002/ajmg.a.32439 CrossRefGoogle Scholar
  10. Bailey Jr., D. B., Hatton, D. D., & Skinner, M. (1998). Early developmental trajectories of males with fragile X syndrome. American Journal of Mental Retardation, 103, 29–39.CrossRefGoogle Scholar
  11. Baker, J. M., & Reiss, A. L. (2016). A meta-analysis of math performance in Turner syndrome. Developmental Medicine and Child Neurology, 58(2), 123–130.  https://doi.org/10.1111/dmcn.12961 CrossRefGoogle Scholar
  12. Barnes, M. A., & Raghubar, K. P. (2014). Mathematics development and difficulties: The role of visual–spatial perception and other cognitive skills. Pediatric Blood & Cancer, 61(10), 1729–1733.  https://doi.org/10.1002/pbc.24909 CrossRefGoogle Scholar
  13. Barrouillet, P., Camos, V., Perruchet, P., & Seron, X. (2004). ADAPT: A developmental, a semantic and procedural model for transcoding from verbal to Arabic numerals. Psychological Review, 111, 368–394.CrossRefGoogle Scholar
  14. Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60(2), 201–214.  https://doi.org/10.1016/j.neuron.2008.10.004 CrossRefGoogle Scholar
  15. Benavides-Varela, S., Piva, D., Burgio, F., Passarini, L., Rolma, G., Meneghello, F., & Semenza, C. (2017). Re-assessing acalculia: Distinguishing spatial and purely arithmetical deficits in right-hemisphere damaged patients. Cortex, 88, 151–164.  https://doi.org/10.1016/j.cortex.2016.12.014 CrossRefGoogle Scholar
  16. Bender, B. G., Harmon, R. J., Linden, M. G., Bucher-Bartelson, B., & Robinson, A. (1999). Psychosocial competence of unselected young adults with sex chromosome abnormalities. American Journal of Medical Genetics Part A, 88(2), 200–206.CrossRefGoogle Scholar
  17. Bender, B. G., Linden, M. G., & Harmon, R. J. (2001). Neuropsychological and functional cognitive skills of 35 unselected adults with sex chromosome abnormalities. American Journal of Medical Genetics Part A, 102(4), 309–313.CrossRefGoogle Scholar
  18. Bender, B. G., Puck, M. H., Salbenblatt, J. A., & Robinson, A. (1986). Dyslexia in 47, XXY boys identified at birth. Behavior Genetics, 16(3), 343–354.CrossRefGoogle Scholar
  19. Bishop, D. V. M., & Rutter, M (2009). Neurodevelopmental disorders: conceptual issues. In M. Rutter, D. V. M. Bishop, D. S. Pine, S. Scott, J. Stevenson, E. Taylor & A. Thapar (Orgs.), Rutter’s child and adolescent psychiatry (5a. ed., pp. 32–41). Oxford: Blackwell.Google Scholar
  20. Bodega, B., Bione, S., Dalprà, L., Toniolo, D., Ornaghi, F., Vegetti, W., et al. (2006). Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Human Reproduction, 21(4), 952–957.  https://doi.org/10.1093/humrep/dei432 CrossRefGoogle Scholar
  21. Bonomi, M., Rochira, V., Pasquali, D., Balercia, G., Jannini, E. A., Ferlin, A., & Klinefelter ItaliaN Group (KING). (2017). Klinefelter syndrome (KS): Genetics, clinical phenotype and hypogonadism. Journal of Endocrinological Investigation, 40(2), 123–134.  https://doi.org/10.1007/s40618-016-0541-6 CrossRefGoogle Scholar
  22. Brankaer, C., Ghesquière, P., De Wel, A., Swillen, A., & De Smedt, B. (2016). Numerical magnitude processing impairments in genetic syndromes: A cross-syndrome comparison of Turner and 22q11. 2 deletion syndromes. Developmental Science.  https://doi.org/10.1111/desc.12458 CrossRefGoogle Scholar
  23. Bretherick, K. L., Fluker, M. R., & Robinson, W. P. (2005). FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Human Genetics, 117(4), 376–382.  https://doi.org/10.1007/s00439-005-1326-8 CrossRefGoogle Scholar
  24. Brown, W. T., Jenkins, E. C., Friedman, E., Brooks, J., Wisniewski, K., Raguthu, S., & French, J. (1982). Autism is associated with the fragile-X syndrome. Journal of Autism and Developmental Disorders, 12(3), 303–308.  https://doi.org/10.1007/BF01531375 CrossRefGoogle Scholar
  25. Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288–298.CrossRefGoogle Scholar
  26. Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8, 36–41.  https://doi.org/10.1111/cdep.12059 CrossRefGoogle Scholar
  27. Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541.  https://doi.org/10.1016/j.tics.2010.09.007 CrossRefGoogle Scholar
  28. Camos, V. (2008). Low working memory capacity impedes both efficiency and learning of number transcoding in children. Journal of Experimental Child Psychology, 99, 37–57.CrossRefGoogle Scholar
  29. Camos, V., Barrouillet, P., & Fayol, M. (2001). Does the coordination of verbal and motor information explain the development of counting in children? Journal of Experimental Child Psychology, 78(3), 240–262.CrossRefGoogle Scholar
  30. Carvalho, M. R. S., & Haase, V. G. (2018). Genetics of Dyscalculia 1: In search of genes. In A. Fritz-Stratmann, V. G. Haase, & P. Räsänen (Eds.), The international handbook of math learning difficulties: from the lab to the classroom. São Paulo, Brazil: Springer.Google Scholar
  31. Carvalho, M. R. S., Vianna, G., Oliveira, L. F. S., Júlio-Costa, A., Pinheiro-Chagas, P., Sturzenecker, R., et al. (2014). Are 22q11.2 distal deletions associated with math difficulties? American Journal of Medical Genetics, 164A, 2256–2262.  https://doi.org/10.1002/ajmg.a.36649 CrossRefGoogle Scholar
  32. Chang, P. N., Gray, R. M., & O'Brien, L. L. (2000). Patterns of academic achievement among patients treated early with phenylketonuria. European Journal of Pediatrics, 159(Suppl 2), S96–S99.CrossRefGoogle Scholar
  33. Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.CrossRefGoogle Scholar
  34. Ciaccio, C., Fontana, L., Milani, D., Tabano, S., Miozzo, M., Esposito, S., et al. (2017). Fragile X syndrome: A review of clinical and molecular diagnoses. Italian Journal of Pediatrics, 43(1), 39.  https://doi.org/10.1186/s13052-017-0355-y CrossRefGoogle Scholar
  35. Cornoldi, C., Mammarella, I., & Fine, J. G. (2016). Nonverbal learning disabilities. Oxford: Oxford University Press.Google Scholar
  36. Costa, A. J., Lopes-Silva, J. G., Pinheiro-Chagas, P., Krinzinger, H., Lonnemann, J., Willmes, K., et al. (2011). A hand full of numbers: A role for offloading in arithmetics learning. Frontiers in Psychology, 2, 368.  https://doi.org/10.3389/fpsyg.2011.00368 CrossRefGoogle Scholar
  37. Crespi, B. J., & Procyshyn, T. L. (2017). Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neuroscience & Biobehavioral Reviews, 79, 14–26.  https://doi.org/10.1016/j.neubiorev.2017.05.004 CrossRefGoogle Scholar
  38. Davidse, N. J., de Jong, M. T., Shaul, S., & Bus, A. G. (2014). A twin-case study of developmental number sense impairment. Cognitive Neuropsychology, 31, 221–236.  https://doi.org/10.1080/02643294.2013.876980 CrossRefGoogle Scholar
  39. De Smedt, B., Devriendt, K., Fryns, J. P., Vogels, A., Gewillig, M., & Swillen, A. (2007). Intellectual abilities in a large sample of children with velo–cardio–facial syndrome: an update. Journal of Intellectual Disability Research, 51(9), 666–670.CrossRefGoogle Scholar
  40. De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278–292.  https://doi.org/10.1016/j.jecp.2010.09.003 CrossRefGoogle Scholar
  41. De Smedt, B., Reynvoet, B., Swillen, A., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Basic number processing and difficulties in single-digit arithmetic: Evidence from Velo-Cardio-Facial Syndrome. Cortex, 45(2), 177–188.  https://doi.org/10.1016/j.cortex.2007.06.003 CrossRefGoogle Scholar
  42. De Smedt, B., Swillen, A., Devriendt, K., Fryns, J. P., Verschaffel, L., Boets, B., & Ghesquière, P. (2008). Cognitive correlates of mathematical disabilities in children with velo-cardio-facial syndrome. Genetic Counseling, 19, 71–94.Google Scholar
  43. De Visscher, A., & Noël, M. P. (2014). Arithmetic facts storage deficit: The hypersensitivity-to-interference in memory hypothesis. Developmental Science, 17(3), 434–442.  https://doi.org/10.1111/desc.12135 CrossRefGoogle Scholar
  44. Debrey, S. M., Leehey, M. A., Klepitskaya, O., Filley, C. M., Shah, R. C., Kluger, B., et al. (2016). Clinical phenotype of adult fragile X gray zone allele carriers: A case series. Cerebellum, 15(5), 623–631.  https://doi.org/10.1007/s12311-016-0809-6 CrossRefGoogle Scholar
  45. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  46. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRefGoogle Scholar
  47. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  48. Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641.Google Scholar
  49. Dumontheil, I., Roggeman, C., Ziermans, T., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2011). Influence of the COMT genotype on working memory and brain activity changes during development. Biological Psychiatry, 70(3), 222–229.  https://doi.org/10.1016/j.biopsych.2011.02.027 CrossRefGoogle Scholar
  50. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.  https://doi.org/10.1016/j.jecp.2014.01.013 CrossRefGoogle Scholar
  51. Fernandez-Carvajal, I., Lopez Posadas, B., Pan, R., Raske, C., Hagerman, P. J., & Tassone, F. (2009). Expansion of an FMR1 grey-zone allele to a full mutation in two generations. The Journal of Molecular Diagnostics : JMD, 11(4), 306–310.  https://doi.org/10.2353/jmoldx.2009.080174 CrossRefGoogle Scholar
  52. Fu, Y. H., Kuhl, D. P., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., et al. (1991). Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell, 67(6), 1047–1058.  https://doi.org/10.1016/0092-8674(91)90283-5 CrossRefGoogle Scholar
  53. Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27(3), 265–279.CrossRefGoogle Scholar
  54. Granà, A., Hofer, R., & Semenza, C. (2006). Acalculia from a right hemisphere lesion: Dealing with “where” in multiplication procedures. Neuropsychologia, 44(14), 2972–2986.CrossRefGoogle Scholar
  55. Gravholt, C. H., Andersen, N. H., Conway, G. S., Dekkers, O. M., Geffner, M. E., Klein, K. O., et al. (2017). Clinical practice guidelines for the care of girls and women with Turner syndrome: Proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. European Journal of Endocrinology, 177(3), G1–G70.  https://doi.org/10.1530/EJE-17-0430 CrossRefGoogle Scholar
  56. Grigsby, J. (2016). The fragile X mental retardation 1 gene (FMR1): Historical perspective, phenotypes, mechanism, pathology, and epidemiology. The Clinical Neuropsychologist, 30(6), 815–833.CrossRefGoogle Scholar
  57. Haase, V. G., Júlio-Costa, A., Lopes-Silva, J. B., Starling-Alves, I., Antunes, A. M., Pinheiro-chagas, P., & Wood, G. (2014). Contributions from specific and general factors to unique deficits: Two cases of mathematics learning difficulties. Frontiers in Psychology, 5, 102.  https://doi.org/10.3389/fpsyg.2014.00102 CrossRefGoogle Scholar
  58. Hagerman, R. J., Jackson, C., Amiri, K., Cronister Silverman, A., O’Connor, R., & Sobesky, W. (1992). Girls with fragile X syndrome: Physical and neurocognitive status and outcome. Pediatrics, 89, 395–400.Google Scholar
  59. Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–669.CrossRefGoogle Scholar
  60. Hall, D. A. (2014). In the gray zone in the fragile X gene: What are the key unanswered clinical and biological questions? Tremor and Other Hyperkinetic Movements (New York, N.Y.), 4, 208.  https://doi.org/10.7916/D8NG4NP3 CrossRefGoogle Scholar
  61. Hartje, W. (1987). The effect of spatial disorders on arithmetical skills. In G. Deloche & X. Seron (Eds.), Mathematical disabilities. A cognitive neuropsychological approach (pp. 121–135). Hillsdadel, NJ: Erlbaum.Google Scholar
  62. Huang, C. J., Chiu, H. J., Lan, T. H., Wang, H. F., Kuo, S. W., Chen, S. F., et al. (2010). Significance of morphological features in schizophrenia of a Chinese population. Journal of Psychiatry Research, 44, 63–68.CrossRefGoogle Scholar
  63. Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360–371.  https://doi.org/10.1111/j.1467-7687.2010.00987.x CrossRefGoogle Scholar
  64. Jäkälä, P., Hänninen, T., Ryynänen, M., Laakso, M., Partanen, K., Mannermaa, A., & Soininen, H. (1997). Fragile-X: Neuropsychological test performance, CGG triplet repeat lengths, and hippocampal volumes. The Journal of Clinical Investigation, 100(2), 331–338.CrossRefGoogle Scholar
  65. Johnson, M. H. (2012). Executive function and developmental disorders: The flip side of the coin. Trends in Cognitive Sciences, 16, 454–457.CrossRefGoogle Scholar
  66. Júlio-Costa, A., Antunes, A. M., Lopes-Silva, J. B., Moreira, B. C., Vianna, G. S., Wood, G., et al. (2013). Count on dopamine: Influences of COMT polymorphisms on numerical cognition. Frontiers in Psychology, 4, 531.  https://doi.org/10.3389/fpsyg.2013.00531 CrossRefGoogle Scholar
  67. Júlio-Costa, A., Starling-Alves, I., Lopes-Silva, J. B., Wood, G., & Haase, v. G. (2015). Stable measures of number sense accuracy in math learning disability: Is it time to proceed from basic science to clinical application? PsyCh Journal, 4, 218–225.  https://doi.org/10.1002/pchj.114 CrossRefGoogle Scholar
  68. Karayiorgou, M., Simon, T. J., & Gogos, J. A. (2010). 22q11.2 microdeletions: Linking DNA structural variation to brain dysfunction and schizophrenia. Nature Reviews Neuroscience, 11, 402–416.CrossRefGoogle Scholar
  69. Karlsgodt, K. H., Bachman, P., Winkler, A. M., Bearden, C. E., & Glahn, D. C. (2011). Genetic influence on the working memory circuitry: Behavior, structure, function and extensions to illness. Behavioural Brain Research, 225(2), 610–622.  https://doi.org/10.1016/j.bbr.2011.08.016 CrossRefGoogle Scholar
  70. Kenna, H. A., Tartter, M., Hall, S. S., Lightbody, A. A., Nguyen, Q., de los Angeles, C. P., et al. (2013). High rates of comorbid depressive and anxiety disorders among women with premutation of the FMR1 gene. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 162(8), 872–878.  https://doi.org/10.1002/ajmg.b.32196 CrossRefGoogle Scholar
  71. Kirk, J. W., Mazzocco, M. M., & Kover, S. T. (2005). Assessing executive dysfunction in girls with fragile X or Turner syndrome using the Contingency Naming Test (CNT). Developmental Neuropsychology, 28(3), 755–777.CrossRefGoogle Scholar
  72. Koontz, K. L., & Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1–23.CrossRefGoogle Scholar
  73. Krajcsi, A., Lukács, A., Igács, J., Racsmány, M., & Pléh, C. (2009). Numerical abilities in Williams syndrome: Dissociating the analogue magnitude system and verbal retrieval. Journal of Clinical and Experimental Neuropsychology, 31, 439–446.CrossRefGoogle Scholar
  74. Lachiewicz, A. M., Dawson, D. V., Spiridigliozzi, G. A., & McConkie-Rosell, A. (2006). Arithmetic difficulties in females with the fragile X premutation. American Journal of Medical Genetics Part A, 140(7), 665–672.  https://doi.org/10.1002/ajmg.a CrossRefGoogle Scholar
  75. Lalli, M. A., Jang, J., Park, J. H. C., Wang, Y., Guzman, E., Zhou, H., et al. (2016). Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Human Molecular Genetics, 25(7), 1294–1306.CrossRefGoogle Scholar
  76. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99–125.CrossRefGoogle Scholar
  77. Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438.CrossRefGoogle Scholar
  78. Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40.Google Scholar
  79. Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the mapping between numerical approximation and number words: Evidence from Williams syndrome and typical development. Developmental Science, 17(6), 905–919.  https://doi.org/10.1111/desc.12154 CrossRefGoogle Scholar
  80. Lindgren, V., McRae, A., Dineen, R., Saulsberry, A., Hoganson, G., & Schrift, M. (2015). Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications. Molecular Genetics & Genomic Medicine, 3(4), 346–353.  https://doi.org/10.1002/mgg3.146. CrossRefGoogle Scholar
  81. Liu, Y., Winarni, T. I., Zhang, L., Tassone, F., & Hagerman, R. J. (2013). Fragile X-associated tremor/ataxia syndrome (FXTAS) in grey zone carriers. Clinical Genetics, 84(1), 74–77.  https://doi.org/10.1111/cge.12026. CrossRefGoogle Scholar
  82. Lopes-Silva, J. B., Moura, R., Júlio-Costa, A., Haase, V. G., & Wood, G. (2014). Phonemic awareness as a pathway to number transcoding. Frontiers in Psychology, 5, 13.  https://doi.org/10.3389/fpsyg.2014.00013 CrossRefGoogle Scholar
  83. Lopes-Silva, J. B., Moura, R., Júlio-Costa, A., Wood, G., Salles, J. F., & Haase, V. G. (2016). What is specific and what is shared between numbers and words? Frontiers in Psychology, 7, 22.  https://doi.org/10.3389/fpsyg.2016.00022 CrossRefGoogle Scholar
  84. Lozano, R., Martinez-Cerdeno, V., & Hagerman, R. J. (2015). Advances in the understanding of the gabaergic neurobiology of FMR1 expanded alleles leading to targeted treatments for fragile X spectrum disorder. Current Pharmaceutical Design, 21(34), 4972–4979.CrossRefGoogle Scholar
  85. Lozano, R., Rosero, C. A., & Hagerman, R. J. (2014). Fragile X spectrum disorders. Intractable & Rare Diseases Research, 3(4), 134–146.  https://doi.org/10.5582/irdr.2014.01022 CrossRefGoogle Scholar
  86. Maenner, M. J., Baker, M. W., Broman, K. W., Tian, J., Barnes, J. K., Atkins, A., et al. (2013). FMR1 CGG expansions: Prevalence and sex ratios. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 162(5), 466–473.  https://doi.org/10.1002/ajmg.b.32176 CrossRefGoogle Scholar
  87. Mammarella, I. C., Caviola, S., Giofrè, D., & Szűcs, D. (2017). The underlying structure of visuospatial working memory in children with mathematical learning disability. The British Journal of Developmental Psychology.  https://doi.org/10.1111/bjdp.12202 CrossRefGoogle Scholar
  88. Mazzocco, M. M. (2001). Math learning disability and math LD subtypes: Evidence from studies of Turner syndrome, fragile X syndrome, and neurofibromatosis type 1. Journal of Learning Disabilities, 34(6), 520–533.CrossRefGoogle Scholar
  89. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237.  https://doi.org/10.1111/j.1467-8624.2011.01608.x CrossRefGoogle Scholar
  90. Mazzocco, M. M., Singh Bhatia, N., & Lesniak-Karpiak, K. (2006). Visuospatial skills and their association with math performance in girls with fragile X or Turner syndrome. Child Neuropsychology, 12(2), 87–110.CrossRefGoogle Scholar
  91. Mazzocco, M. M. M. (2007). When a genetic disorder is associated with learning disabilities. In M. M. M. Mazzocco & J. L. Ross (Eds.), Neurogenetic developmental disorders. Variation of manifestation in childhood (pp. 414–436). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  92. McDonald-McGinn, D. M., Sullivan, K. E., Marino, B., Philip, N., Swillen, A., Vorstman, J. A., et al. (2015). 22q11.2 deletion syndrome. Nature Reviews Disease Primers, 1, 15071.  https://doi.org/10.1038/nrdp.2015.71 CrossRefGoogle Scholar
  93. Menghini, D., Verucci, L., & Vicari, S. (2004). Reading and phonological awareness in Williams syndrome. Neuropsychology, 18(1), 29.CrossRefGoogle Scholar
  94. Mikhail, F. M., Burnside, R. D., Rush, B., Ibrahim, J., Godshalk, R., Rutledge, S. L., et al. (2014). The recurrent distal 22q11.2 microdeletions are often de novo and do not represent a single clinical entity: A proposed categorization system. Genetics in Medicine, 16(1), 92–100.  https://doi.org/10.1038/gim.2013.79. CrossRefGoogle Scholar
  95. Miyake, A., Friedman, N. P., Emerson, J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and the contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRefGoogle Scholar
  96. Moura, R. J., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2013). Transcoding abilities in typical and atypical mathematics achievers: The role of working memory, procedural and lexical competencies. Journal of Experimental Child Psychology, 116, 707–727.CrossRefGoogle Scholar
  97. Murphy, M., Mazzocco, M. M. M., Gerner, G., & Henry, A. E. (2006). Mathematics learning disability in girls with Turner syndrome or fragile X syndrome. Brain and Cognition, 61, 195–210.CrossRefGoogle Scholar
  98. Murphy, M. M., Mazzocco, M. M., & McCloskey, M. (2010). Genetic disorders as models of mathematics learning disability: Fragile X and Turner syndromes. In M. A. Barnes (Ed.), Genes, brain and development. The neurocognition of genetic disorders (pp. 143–174). New York: Cambridge University Press.CrossRefGoogle Scholar
  99. Murphy, M. M., & Mazzocco, M. M. M. (2008). Mathematics learning disabilities in girls with fragile X or Turner syndrome during late elementary school. Journal of Learning Disabilities, 41(1), 29–46.CrossRefGoogle Scholar
  100. Naess, K. A. (2016). Development of phonological awareness in Down syndrome: A meta-analysis and empirical study. Developmental Psychology, 52(2), 177–190.  https://doi.org/10.1037/a0039840 CrossRefGoogle Scholar
  101. Noël, M. P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 165.  https://doi.org/10.3389/fnhum.2011.00165 CrossRefGoogle Scholar
  102. Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS One, 8(7), e67918.  https://doi.org/10.1371/journal.pone.0067918 CrossRefGoogle Scholar
  103. O’Hearn, K., Hoffman, J. E., & Landau, B. (2011). Small subitizing range in people with Williams syndrome. Visual Cognition, 19, 289–312.CrossRefGoogle Scholar
  104. O'Hearn, K., & Landau, B. (2007). Mathematical skill in individuals with Williams syndrome: Evidence from a standardized mathematics battery. Brain and Cognition, 64, 238–246.CrossRefGoogle Scholar
  105. Oliveira, L. F. S., Vianna, G. S., Di Ninno, C. Q. M. S., Giacheti, C. M., Carvalho, M. R. S., Wood, G., et al. (2014). Impaired acuity of the approximate number system in 22q11.2 microdeletion syndrome. Psychology & Neuroscience, 7, 151–158.  https://doi.org/10.3922/j.psns.2014.02.04 CrossRefGoogle Scholar
  106. Opfer, J. E., & Martens, M. A. (2012). Learning without representational change: Development of numerical estimation in individuals with Williams syndrome. Developmental Science, 15, 863–875.CrossRefGoogle Scholar
  107. Passolunghi, M. C., & Mammarella, I. C. (2012). Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. Journal of Learning Disabilities, 45(4), 341–350.  https://doi.org/10.1177/0022219411400746 Epub 2011 Mar 28.CrossRefGoogle Scholar
  108. Paterson, S. J., Brown, J. H., Gsödl, M. K., Johnson, M. H., & Karmiloff-Smith, A. (1999). Cognitive modularity of genetic disorders. Science, 286, 2355–2358.CrossRefGoogle Scholar
  109. Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2006). Are numerical impairments syndrome specific? Evidence from Williams syndrome and Down syndrome. Journal of Child Psychology and Psychiatry, 47, 190–204.CrossRefGoogle Scholar
  110. Pennington, B. F., Bender, B., Puck, M., Salbenblatt, J., & Robinson, A. (1982). Learning disabilities in children with sex chromosome anomalies. Child Development, 1182–1192.CrossRefGoogle Scholar
  111. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551.  https://doi.org/10.1016/j.tics.2010.09.008 CrossRefGoogle Scholar
  112. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41.  https://doi.org/10.1016/j.cognition.2010.03.012 CrossRefGoogle Scholar
  113. Pierpont, E. I., Ellis Weismer, S., Roberts, A. E., Tworog-Dube, E., Pierpont, M. E., Mendelsohn, N. J., & Seidenberg, M. S. (2010). The language phenotype of children and adolescents with Noonan syndrome. Journal of Speech, Language, and Hearing Research, 53(4), 917–932.  https://doi.org/10.1044/1092-4388(2009/09-0046) CrossRefGoogle Scholar
  114. Pinheiro-Chagas, P., Wood, G., Knops, A., Krinzinger, H., Lonnemann, J., Starling-Alves, I., et al. (2014). In how many ways is the approximate number system associated with exact calculation? PLoS One, 9, e111155.  https://doi.org/10.1371/journal.pone.0111155 CrossRefGoogle Scholar
  115. Pitts, C. H., & Mervis, C. B. (2016). Performance on the Kaufman Brief Intelligence Test-2 by children with Williams syndrome. American Journal on Intellectual and Developmental Disabilities, 121(1), 33–47.CrossRefGoogle Scholar
  116. Quintin, E. M., Jo, B., Hall, S. S., Bruno, J. L., Chromik, L. C., Raman, M. M., et al. (2016). The cognitive developmental profile associated with fragile X syndrome: A longitudinal investigation of cognitive strengths and weaknesses through childhood and adolescence. Development and Psychopathology, 28, 1457–1469.CrossRefGoogle Scholar
  117. Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42, 356–371.CrossRefGoogle Scholar
  118. Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122.CrossRefGoogle Scholar
  119. Roberts, J. E., Schaaf, J. M., Skinner, M., Wheeler, A., Hooper, S., Hatton, D. D., & Bailey, D. B. (2005). Academic skills of boys with fragile X syndrome: Profiles and predictors. American Journal of Mental Retardation: AJMR, 110(2), 107–120.CrossRefGoogle Scholar
  120. Ross, J. L., Roeltgen, D., Kushner, H., Wei, F., & Zinn, A. R. (2000). The Turner syndrome–associated neurocognitive phenotype maps to distal Xp. The American Journal of Human Genetics, 67(3), 672–681.CrossRefGoogle Scholar
  121. Ross, J. L., Roeltgen, D. P., Stefanatos, G., Benecke, R., Zeger, M. P., Kushner, H., et al. (2008). Cognitive and motor development during childhood in boys with Klinefelter syndrome. American Journal of Medical Genetics Part A, 146(6), 708–719.CrossRefGoogle Scholar
  122. Ross, J. L., Zeger, M. P., Kushner, H., Zinn, A. R., & Roeltgen, D. P. (2009). An extra X or Y chromosome: Contrasting the cognitive and motor phenotypes in childhood in boys with 47, XYY syndrome or 47, XXY Klinefelter syndrome. Developmental Disabilities Research Reviews, 15(4), 309–317.CrossRefGoogle Scholar
  123. Rousseau, F., Heitz, D., Tarleton, J., et al. (1994). A multicenter study on genotype-phenotype correlations in the fragile X syndrome, using direct diagnosis with probe StB12.3: The first 2,253 cases. American Journal of Human Genetics, 55, 225–237.Google Scholar
  124. Rousselle, L., Dembour, G., & Noël, M. P. (2013). Magnitude representations in Williams syndrome: Differential acuity in time, space and number processing. PLoS One, 8(8), e72621.  https://doi.org/10.1371/journal.pone.0072621 eCollection 2013.CrossRefGoogle Scholar
  125. Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non symbolic number magnitude processing. Cognition, 102(3), 361–395.  https://doi.org/10.1016/j.cognition.2006.01.005 CrossRefGoogle Scholar
  126. Rovet, J., Netley, C., Keenan, M., Bailey, J., & Stewart, D. (1996). The psychoeducational profile of boys with Klinefelter syndrome. Journal of Learning Disabilities, 29(2), 180–196.CrossRefGoogle Scholar
  127. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, (3), 20.  https://doi.org/10.1111/desc.12372 CrossRefGoogle Scholar
  128. Schoch, K., Harrell, W., Hooper, S. R., Ip, E. H., Saldana, S., Kwapil, T. R., & Shashi, V. (2014). Applicability of the nonverbal learning disability paradigm for children with 22q11.2 deletion syndrome. Journal of Learning Disabilities, 47(2), 153–166.  https://doi.org/10.1177/0022219412443556 CrossRefGoogle Scholar
  129. Semenza, C., Bonollo, S., Polli, R., Busana, C., Pignatti, R., Iuculano, T., et al. (2012). Genetics and mathematics: FMR1 premutation female carriers. Neuropsychologia, 50(14), 3757–3763.  https://doi.org/10.1016/j.neuropsychologia.2012.10.021 CrossRefGoogle Scholar
  130. Shprintzen, R. J. (2008). Velo-cardio-facial syndrome: 30 Years of study. Developmental Disabilities Research Reviews, 14(1), 3–10.  https://doi.org/10.1002/ddrr.2 CrossRefGoogle Scholar
  131. Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Review of Psychology, 68, 187–213.  https://doi.org/10.1146/annurev-psych-010416-044101 CrossRefGoogle Scholar
  132. Simmons, F. R., & Singleton, C. (2008). Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia, 14, 77–94.CrossRefGoogle Scholar
  133. Simon, T. J. (2008). A new account of the neurocognitive foundations of impairments in space, time, and number processing in children with chromosome 22q11.2 deletion syndrome. Developmental Disabilities Research Reviews, 14(1), 52–58.CrossRefGoogle Scholar
  134. Simon, T. J., Bearden, C. E., McDonald-McGinn, D., & Zackai, E. (2005). Visuospatial and numeric cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex, 41, 145–155.CrossRefGoogle Scholar
  135. Simon, T. J., Bish, J. P., Bearden, C. E., Ding, L., Ferrante, S., Nguyen, V., et al. (2005). A multilevel analysis of cognitive dysfunction and psychopathology associated with chromosome 22q11.2 deletion syndrome in children. Development and Psychopathology, 17, 753–784.CrossRefGoogle Scholar
  136. Simon, T. J., Takarae, Y., DeBoer, T., McDonald-McGinn, D. M., Zackai, E. H., & Ross, J. L. (2008). Overlapping numerical cognition impairments in children with chromosome 22q11.2 deletion or Turner syndromes. Neuropsychologia, 46, 82–94.CrossRefGoogle Scholar
  137. Sullivan, A. K., Marcus, M., Epstein, M. P., Allen, E. G., Anido, A. E., Paquin, J. J., et al. (2005). Association of FMR1 repeat size with ovarian dysfunction. Human Reproduction, 20(2), 402–412.CrossRefGoogle Scholar
  138. Ta’ir, J., Brezner, A., & Ariel, R. (1997). Profound developmental dyscalculia: Evidence for a cardinal/ordinal acquisition device. Brain and Cognition, 35, 184–206.CrossRefGoogle Scholar
  139. Temple, C. M., & Carney, R. A. (1995). Patterns of spatial functioning in Turner’s syndrome. Cortex, 31(1), 109–118.CrossRefGoogle Scholar
  140. Temple, C. M., & Shephard, E. E. (2012). Exceptional lexical skills but executive language deficits in school starters and young adults with Turners syndrome: Implications for X chromosome effects on brain function. Brain and Language, 120(3), 345–359.CrossRefGoogle Scholar
  141. Trbovich, P. L., & LeFevre, J. A. (2003). Phonological and visual working memory in mental addition. Memory & Cognition, 31(5), 738–745.CrossRefGoogle Scholar
  142. van Herwegen, J., Ansari, D., Xu, F., & Karmiloff-Smith, A. (2008). Small and large number processing in infants and toddlers with Williams syndrome. Developmental Science, 11, 637–643.CrossRefGoogle Scholar
  143. van Rijn, S., & Swaab, H. (2015). Executive dysfunction and the relation with behavioral problems in children with 47, XXY and 47, XXX. Genes, Brain and Behavior, 14(2), 200–208.CrossRefGoogle Scholar
  144. Vanbinst, K., Ceulemans, E., Peters, L., Ghesquière, P., & De Smedt, B. (2017). Developmental trajectories of children’s symbolic numerical magnitude processing skills and associated cognitive competencies. Journal of Experimental Child Psychology, 166, 232–250.  https://doi.org/10.1016/j.jecp.2017.08.008 CrossRefGoogle Scholar
  145. Vandeweyer, G., Van der Aa, N., Reyniers, E., & Kooy, R. F. (2012). The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. American Journal of Human Genetics, 90(6), 1071–1078.  https://doi.org/10.1016/j.ajhg.2012.04.020 CrossRefGoogle Scholar
  146. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). New York: Guilford.Google Scholar
  147. Zinn, A. R., Roeltgen, D., Stefanatos, G., Ramos, P., Elder, F. F., Kushner, H., et al. (2007). A Turner syndrome neurocognitive phenotype maps to Xp22. 3. Behavioral and Brain Functions, 3(1), 24.CrossRefGoogle Scholar
  148. Zougkou, K., & Temple, C. M. (2016). The processing of number scales beyond whole numbers in development: Dissociations in arithmetic in Turner’s syndrome. Cognitive Neuropsychology, 33(5–6), 277–298.  https://doi.org/10.1080/02643294.2016.1179178 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Maria Raquel S. Carvalho
    • 1
    Email author
  • Vitor Geraldi Haase
    • 2
  1. 1.Departamento de Biologia GeralInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Departamento de PsicologiaFaculdade de Filosofia e Ciências Humanas, Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations