Wild Beans (Phaseolus L.) of North America

  • Sarah Dohle
  • Jorge Carlos Berny Mier y Teran
  • Ashley Egan
  • Theodore Kisha
  • Colin K. KhouryEmail author


The wild relatives of the five domesticated species of bean (Phaseolus L.) are widely distributed across the tropics and subtropics of the New World, with taxa extending from the Canadian border to Argentina, and on the Caribbean Islands, Bermuda, and the Galapagos Islands. Mesoamerica holds the largest concentration of species, particularly in the highlands of central Mexico, northward along the Sierra Madre Occidental, and south to Chiapas. The progenitors and close relatives of all five domesticates are also concentrated in this region. Plant breeding involving the use of wild relatives has almost entirely been directed toward the improvement of common bean (Phaseolus vulgaris L.), the most widely cultivated species, and successful contributions have mostly come from its progenitor (Phaseolus vulgaris L.) and a few other taxa. Wild relatives are considered to possess novel useful genetic variation that has not yet been fully explored. A number of wild Phaseolus are rare endemics that are threatened in their natural habitats and are insufficiently protected in situ. Significant ex situ collections of wild Phaseolus are maintained at the International Center for Tropical Agriculture (CIAT), the USDA-ARS National Plant Germplasm System, within the Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI) Conservation Centers Network in Mexico, and at the Botanic Garden Meise, Belgium. Unfortunately, over 26% of Phaseolus taxa are not represented at all in these ex situ conservation facilities, and another 29% are represented by less than ten accessions, making over half of the species highly underrepresented in genebanks. Further efforts to enhance the protection of vulnerable species in their natural habitats, and further collecting to fill critical gaps in germplasm collections, are warranted.


Genetic resources Ex situ conservation In situ conservation Grain legumes 


  1. Acevedo M, Steadman JR, Rosas JC, Venegas J (2006) New sources of resistance to bean rust and implications for host-pathogen coevolution. Annu Rep Bean Improv Coop (USA) 49:77–78Google Scholar
  2. Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(Supplement_3):S-44CrossRefGoogle Scholar
  3. Adams MW (1977) An estimation of homogeneity in crop plants with special reference to genetic vulnerability in the dry bean, Phaseolus vulgaris L. Euphytica 26:665–679CrossRefGoogle Scholar
  4. Allard HA (1947) The ecology of the wild kidney bean Phaseolus polystachios (L.) BSP. J Wash Acad Sci 37(9):306–309PubMedGoogle Scholar
  5. Al-Yasiri SA, Coyne DB (1966) Interspecific hybridization in the genus Phaseolus. Crop Sci 6(1):59–60CrossRefGoogle Scholar
  6. Anderson NO, Ascher PD, Haghighi K (1996) Congruity backcrossing as a means of creating genetic variability in self pollinated crops: seed morphology of Phaseolus vulgaris L. and P. acutifolius A. Gray hybrids. Euphytica 87(3):211–224CrossRefGoogle Scholar
  7. Ariani A, Berny Mier y Teran JC, Gepts P (2017) Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Mol Biol Evol msx273Google Scholar
  8. Balasubramanian P, Vandenberg A, Hucl P, Gusta L (2004) Resistance of Phaseolus species to ice crystallization at subzero temperature. Physiol Plant 120(3):451–457PubMedCrossRefGoogle Scholar
  9. Baudoin JP (1988) Genetic resources, domestication and evolution of lima bean, Phaseolus lunatus. In: Genetic resources of Phaseolus beans. Springer Netherlands, Dordrecht, pp 393–407CrossRefGoogle Scholar
  10. Beaver JS, Zapata M, Alameda M, Porch TG, Rosas JC (2012) Registration of PR0401-259 and PR0650-31 dry bean germplasm lines. J Plant Regist 6(1):81–84CrossRefGoogle Scholar
  11. Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426CrossRefGoogle Scholar
  12. Beebe SE, Ochoa I, Skroch P, Nienhuisl J, Tivang J (1995) Genetic diversity among common bean breeding lines developed for Central America. Crop Sci 35:1178–1183CrossRefGoogle Scholar
  13. Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G, Bueno JM, Blair MW (2011) Genetic improvement of common beans and the challenges of climate change. In: Crop adaptation to climate change, vol 26. Wiley, Blackwell Publishing Ltd, Richmond, pp 356–369CrossRefGoogle Scholar
  14. Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197(1):300–313PubMedCrossRefGoogle Scholar
  15. Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa R (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci 8:722PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294PubMedCrossRefGoogle Scholar
  17. Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112(6):1149–1163PubMedCrossRefGoogle Scholar
  18. Blair MW, Cortés AJ, This D (2016) Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Sci 242:250–259PubMedCrossRefGoogle Scholar
  19. Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16(2):93–108CrossRefGoogle Scholar
  20. Botanic Garden Meise (2017) Seedbank. [Verified Nov 11 2017]
  21. Botanic Gardens Conservation International (BGCI) (2017) Plant Search database. BGCI US, San Marino, CA. [Verified 18 Jan 2017]
  22. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252(1):55–128CrossRefGoogle Scholar
  23. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022PubMedCrossRefGoogle Scholar
  24. CGIAR (2017) Grain legumes – A CGIAR research program. [Verified 6 Nov 2017]
  25. CIAT (2017) Bean collection. [Verified Nov 11 2017]
  26. Connecticut Department of Energy and Environmental Protection (CT DEEP) (2015) Connecticut’s Endangered, Threatened, and Special Concern Species 2015. Bureau of Natural Resources. [Verified 20 November 2017]
  27. Contu S (2012) Phaseolus polystachios. The International Union for Conservation of Nature IUCN red list of threatened species 2012: e.T19892040A20127299. [Verified 10 November 2017]
  28. Copeland A, Malcolm P, Bárrios S (2014) Phaseolus lignosus. The International Union for Conservation of Nature IUCN red list of threatened species 2014: e.T56960811A56960839. [Verified 10 November 2017]
  29. Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW (2013) Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One 8(5):e62898PubMedPubMedCentralCrossRefGoogle Scholar
  30. Data Providers and Crop Trust (2017) Genesys. [Verified Nov 11 2017]
  31. De Ron AM, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, Fourie D, Marsolais F, Beaver J, Geffroy V, McClean P (2015) Common bean. In: De Ron A (ed) Grain legumes. Handbook of plant breeding, vol 10. Springer, New York, pp 1–36Google Scholar
  32. Debouck DG (1999) Diversity in Phaseolus species in relation to the common bean. Chapter 2. In: Singh SP (ed) Common bean improvement in the twenty-first century. Springer, New York, pp 25–52CrossRefGoogle Scholar
  33. Debouck DG (2000) Biodiversity, ecology, and genetic resources of Phaseolus beans Seven answered and unanswered questions. In: K. Oono (ed.). Wild Legumes. MAFF International Workshop on Genetic Resources, Ministry of Agriculture, Forestry and Fisheries Research Council Secretariat and National Institute of Agrobiological Resources (NIAR), Tsukuba, Japan. p. 95–123. (see,
  34. Debouck DG (2015) Observations about Phaseolus lignosus (Leguminosae: Papilionoideae: Phaseoleae), a bean species from the Bermuda Islands. J Bot Res Inst 9(1):107–119Google Scholar
  35. Debouck DG, Smartt J (1995) Beans. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, Singapore, pp 287–294Google Scholar
  36. Delgado-Salinas A, Carr WR (2007) Phaseolus texensis (Leguminosae: Phaseolinae): a new species from the Edwards Plateau of central Texas. Lundellia 10:11–17CrossRefGoogle Scholar
  37. Delgado-Salinas A, Turley T, Richman A, Lavin M (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460CrossRefGoogle Scholar
  38. Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791CrossRefGoogle Scholar
  39. Dhaliwal AS, Pollard LH (1962) Cytological behavior of an F1 species cross (Phaseolus lunatus L. var. Ford hook × Phaseolus polystachyus L.). Cytologia 27(4):369–374CrossRefGoogle Scholar
  40. Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papiliodoideae) in North America, Mexico and Central America. Sida, Botanical Miscellany Botanical Researh Institute of Texas, USAGoogle Scholar
  41. Freytag GF, Bassett MJ, Zapata M (1982) Registration of XR-235-1-1 bean germplasm. Crop Sci 22:1268–1269CrossRefGoogle Scholar
  42. Garvin FD, Weeden N (1994) Isozyme evidence supporting a simple geographic origin for domesticated tepary bean. Crop Sci 34:1390–1395CrossRefGoogle Scholar
  43. Gentry HS (1969) Origin of the common bean, Phaseolus vulgaris. Econ Bot 23(1):55–69CrossRefGoogle Scholar
  44. Gepts P (1998) Origin and evolution of common bean: past events and recent trends. Hortscience 33(7):1124–1130CrossRefGoogle Scholar
  45. Gepts P (2001) Phaseolus vulgaris (beans). In: Encyclopedia of genetics. Academic Press, pp 1444–1445
  46. Groom A (2012) Phaseolus xanthotrichus. The International Union for Conservation of Nature IUCN red list of threatened species 2012: e.T19892311A20127655. [Verified 10 November 2017
  47. Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  48. Hart JP, Reber EA, Thompson RG, Lusteck R (2008) Taking variation seriously: testing the steatite mast-processing hypothesis with microbotanical data from the hunter’s home site, New York. Am Antiq 73(4):729–741CrossRefGoogle Scholar
  49. Hunter JE, Dickson MH, Boettger MA, Cigna JA (1982) Evaluation of plant introductions of Phaseolus spp. for resistance to white mold. Plant Dis 66(4):320–322CrossRefGoogle Scholar
  50. Jarvis A, Ramirez-Villegas J, Campo BV, Navarro-Racines C (2012) Is cassava the answer to African climate change adaptation? Trop Plant Biol 5(1):9–29CrossRefGoogle Scholar
  51. Kaplan L (1965) Archeology and domestication in American Phaseolus (beans). Econ Bot 19(4):358–368CrossRefGoogle Scholar
  52. Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102(3):343–356CrossRefGoogle Scholar
  53. Kelly JD, Schneider KA, Kolkman JM (1999) Breeding to improve yield. In: Singh SP (ed) Common bean improvement in the twenty-first century. Developments in plant breeding. Springer, Dordrecht, pp 185–222CrossRefGoogle Scholar
  54. Kipe-Nolt JA, Montealegre CM, Tohme J (1992) Restriction of nodulation by the broad host range Rhizobium tropici strain CIAT899 in wild accessions of Phaseolus vulgaris L. New Phytol 120:489–494CrossRefGoogle Scholar
  55. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36(4):1037–1045CrossRefGoogle Scholar
  56. Kornegay J, Cardona C (1991) Breeding for insect resistance. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, pp 619–641Google Scholar
  57. Kornegay J, Cardona C, Posso CE (1993) Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33(3):589–594CrossRefGoogle Scholar
  58. Kusolwa PM, Myers JR, Porch TG, Trukhina Y, González-Vélez A, Beaver JS (2016) Registration of AO-1012-29-3-3A red kidney bean germplasm line with bean weevil, BCMV, and BCMNV resistance. J. Plant Regist 10:149–153CrossRefGoogle Scholar
  59. Liogier AH (1988) Description of the flora Puerto Rico & adjacent islands. Spermatophyta vol IIGoogle Scholar
  60. Mahuku GS, Jara CE, Cajiao C, Beebe S (2002) Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Dis 86(12):1383–1387PubMedCrossRefGoogle Scholar
  61. McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93(2):148–152PubMedCrossRefGoogle Scholar
  62. McClean PE, Gepts P, Kami J (2004) Genomics and genetic diversity in common bean. In: Wilson R, Stalker HT, Brummer EC (eds) Legume crop genomics. AOCS, Champaign, pp 60–82Google Scholar
  63. Mejía-Jiménez A, Muñoz C, Jacobsen HJ, Roca WM, Singh SP (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88(3–4):324–331PubMedCrossRefGoogle Scholar
  64. Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352PubMedCrossRefGoogle Scholar
  65. Michigan Department of Natural Resources (MI DNR) (2017) MICHIGAN’S SPECIAL PLANTS: Endangered, Threatened, Special Concern, and Probably Extirpated. [Verified 20 November 2017]
  66. Miklas PN, Zapata M, Beaver JS, Grafton KF (1999) Registration of four dry bean germplasms resistant to common bacterial blight: ICB-3, ICB-6, ICB-8, and ICB-10. Crop Sci 39(2):594CrossRefGoogle Scholar
  67. Miller RE, Khoury CK (2018) The gene pool concept applied to crop wild relatives: an evolutionary perspective. In: Greene SL, Williams KA, Khoury CK, Kantar M, Marek L (eds) North American crop wild relatives: conservation and use. Springer (this book)Google Scholar
  68. Mina-Vargas AM, McKeown PC, Flanagan NS, Debouck DG, Kilian A, Hodkinson TR, Spillane C (2016) Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species. An Bot 118(5):957–969CrossRefGoogle Scholar
  69. Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breed 130(6):665–672CrossRefGoogle Scholar
  70. Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a Middle American diversity panel of common bean. The Plant Genome 9(3):1–21Google Scholar
  71. Mok DW, Mok MC, Rabakoarihanta A (1978) Interspecific hybridization of Phaseolus vulgaris with P. lunatus and P. acutifolius. Theor Appl Genet 52(5):209–215PubMedCrossRefGoogle Scholar
  72. Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG (2010) Multiple origins of lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50(5):1773–1787CrossRefGoogle Scholar
  73. Muñoz LC, Duque MC, Debouck DG, Blair MW (2006) Taxonomy of tepary bean and wild relatives as determined by amplified fragment length polymorphism (AFLP) markers. Crop Sci 46:1744–1754CrossRefGoogle Scholar
  74. Nabhan GP (1985) Native crop diversity in Aridoamerica: conservation of regional genepools. Econ Bot 39(4):387–399CrossRefGoogle Scholar
  75. Nabhan GP (1990) Wild Phaseolus Ecogeography in the Sierra Madre Occidental, Mexico: Areographic techniques for targeting and conserving species diversity. Systematic and Ecogeographic Studies on Crop Genepools 5. International Board of Plant Genetic Resources (IBPGR)Google Scholar
  76. NatureServe (2017) NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available [Verified 9 Nov 2017]
  77. Osborn TC, Alexander DC, Sun SS, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240(4849):207CrossRefGoogle Scholar
  78. Osborn TC, Hartweck LM, Harmsen RH, Vogelzang RD, Kmiecik KA, Bliss FA (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. (Registrations of genetic stocks). Crop Sci 43(4):1570–1572CrossRefGoogle Scholar
  79. Osorno JM, Muñoz CG, Beaver JS, Ferwerda FH, Bassett MJ, Miklas PN, Olczyk T, Bussey B (2007) Two genes from Phaseolus coccineus confer resistance to bean golden yellow mosaic virus in common bean. J Am Soc Hortic Sci 132(4):530–533CrossRefGoogle Scholar
  80. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106(2):239–250PubMedCrossRefGoogle Scholar
  81. Pennsylvania Natural Heritage Program Species Lists (PA Natural Heritage Program Species Lists) (2014) Endangered, threatened, special concern species & rare and significant ecological features. [Verified 20 November 2017]
  82. Piper CV (1926) Studies of American Phaseolineae. Bull Appl Bot Leningrad 14:143–148Google Scholar
  83. Porch TG, Beaver JS, Brick MA (2013a) Registration of tepary germplasm with multiple-stress tolerance, TARS-Tep 22 and TARS-Tep 32. J Plant Regist 7(3):358–364CrossRefGoogle Scholar
  84. Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013b) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3(2):433–461CrossRefGoogle Scholar
  85. Pratt RC, Nabhan GP (1988) Evolution and diversity of Phaseolus acutifolius genetic resources. In: Gepts P (ed) Genetic resources of Phaseolus beans. Springer, Dordrecht, pp 409–440CrossRefGoogle Scholar
  86. Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A, Herraiz FJ, Rodríguez-Burruezo A, Soler S, Knapp S, Vilanova S (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213(7):158CrossRefGoogle Scholar
  87. Ramírez-Delgadillo R, Delgado-Salinas A (1999) A new species of Phaseolus (Fabaceae) from West-Central Mexico. SIDA 18:637–646Google Scholar
  88. Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Luigi G (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS One 5(10):e13497PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rao I, Beebe S, Polania J, Ricaurte J, Cajiao C, Garcia R, Rivera M (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21(4):265–281Google Scholar
  90. Rendón-Anaya M, Herrera-Estrella A, Gepts P, Delgado-Salinas A (2017a) A new species of Phaseolus (Leguminosae, Papilionoideae) sister to Phaseolus vulgaris, the common bean. Phytotaxa 313(3):259–266CrossRefGoogle Scholar
  91. Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye L, Gabaldón T (2017b) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18(1):60PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rodiño AP, Lema M, Pérez-Barbeito M, Santalla M, De Ron AM (2007) Assessment of runner bean (Phaseolus coccineus L.) germplasm for tolerance to low temperature during early seedling growth. Euphytica 155(1–2):63–70CrossRefGoogle Scholar
  93. Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol 209(4):1781–1794PubMedCrossRefGoogle Scholar
  94. Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz-Cereceres J, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crop Res 85:203–211CrossRefGoogle Scholar
  95. Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Crit Rev Plant Sci 34(1–3):2CrossRefGoogle Scholar
  96. Scarry CM, Reitz EJ (2005) Changes in foodways at the Parkin site, Arkansas. Southeast Archaeol 24:107Google Scholar
  97. Schinkel C, Gepts P (1988) Phaseolin diversity in the tepary bean Phaseolus acutifolius A Gray. Plant Breed 101(4):292–301CrossRefGoogle Scholar
  98. Schmit V, Baudoin JP (1992) Screening for resistance to Ascochyta blight in populations of Phaseolus coccineus L. and P. polyanthus Greenman. F Crop Res 30(1–2):155–165CrossRefGoogle Scholar
  99. Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53(5):1832–1844CrossRefGoogle Scholar
  100. Schwartz HF, Otto K, Terán H, Lema M, Singh SP (2006) Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis 90(9):1167–1170PubMedCrossRefGoogle Scholar
  101. Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck DG, Chacón S, María I (2012) Evolution and domestication of lima bean in Mexico: evidence from ribosomal DNA. Crop Sci 52(4):1698–1712CrossRefGoogle Scholar
  102. Shellie-Dessert KC, Bliss FA (1991) Genetic improvements of food quality factors. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CIAT Redwood Press Ltd, Melksham, pp 649–671Google Scholar
  103. Singh SP (1992) Common bean improvement in the tropics. Plant Breed Rev 10:199–269Google Scholar
  104. Singh SP (1999) Integrated genetic improvement. In: Singh SP (ed) Common bean improvement in the twenty-first century. (Developments in plant breeding, vol 7). Kluwer Academic Publishers, Dordrecht, pp 133–165Google Scholar
  105. Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675CrossRefGoogle Scholar
  106. Singh RJ, Jauhar P (2005) Genetic resources, chromosome engineering, and crop improvement: grain legumes, vol 1. CRC Press, p 390
  107. Singh SP, Debouck DG, Roca WM (1998) Interspecific hybridization between Phaseolus vulgaris L. and Freytag. Bean Improvement Cooperative (USA)Google Scholar
  108. Singh SP, Terán H, Schwartz HF, Otto K, Lema M (2009) Introgressing white mold resistance from species of the secondary gene pool into common bean. Crop Sci 49(5):1629–1637CrossRefGoogle Scholar
  109. Small E (2014) Tepary bean – an ideal arid zone crop. Biodiversity 15(2–3):220–228CrossRefGoogle Scholar
  110. Smartt J (1970) Interspecific hybridization between cultivated American species of the genus Phaseolus. Euphytica 19(4):480–489CrossRefGoogle Scholar
  111. Smartt J (1981) Gene pools in Phaseolus and Vigna cultigens. Euphytica 30:445–449CrossRefGoogle Scholar
  112. Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus Vulgaris L.). Theor Appl Genet 89(5):629–635PubMedCrossRefGoogle Scholar
  113. Sousa M, Delgado-Salinas A (1993) Mexican Leguminosae: phytogeography, endemism, and origins. In: Ramamoorthy TP, Bye R, Lot A, Fa JA (eds) Biological diversity of Mexico, origins and distribution. Oxford University Press, New York, pp 459–512Google Scholar
  114. Souter JR, Gurusamy V, Porch TG, Bett KE (2017) Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Sci 57:1160–1171CrossRefGoogle Scholar
  115. The Harlan and de Wet Crop Wild Relative Inventory (2017). [Verified 19 September 2017]
  116. U.S. Fish and Wildlife Service Environmental Conservation Online System (2017) Threatened and endangered species. [Verified 10 November 2017]
  117. USDA-ARS, National Plant Germplasm System (2017a) Germplasm Resources Information Network (GRIN Global) database. National Germplasm Resources Laboratory, Beltsville, MD.[Verified 18 Jan 2017]
  118. USDA-ARS, National Plant Germplasm System (2017b) Germplasm Resources Information Network (GRIN Global) Taxonomy. National Germplasm Resources Laboratory, Beltsville, MD. [Verified 10 October 2017]
  119. van der Maesen LJG, Somaatmadja SH (1992) Plant resources of south-east asia no. 1 pulses. Prosea Fondation, Bogor, Indonesia, Pudoc-DLO, Wageningen, The Netherlands, pp 1–59Google Scholar
  120. Vasconcellos RC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN (2017) Meta-QTL for resistance to white mold in common bean. PLoS One 12(2):e0171685PubMedPubMedCentralCrossRefGoogle Scholar
  121. Vázquez-García (1995) Flora de Manantlán: plantas vasculares de la Reserva de la Biosfera Sierra de Manantlán, Jalisco-Colima, México. Botanical Research Institute of Texas, Fort WorthGoogle Scholar
  122. Waines JG, Manshardt RM, Wells WC (1988) Interspecific hybridization between Phaseolus vulgaris and P. acutifolius. In: Gepts P (ed) Genetic resources of Phaseolus beans. Curren plant science and biotechnology in agriculture, vol 6. Springer, Dordrecht, pp 485–502CrossRefGoogle Scholar
  123. Wright EM, Kelly JD (2011) Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179(3):471–484CrossRefGoogle Scholar
  124. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46PubMedCrossRefGoogle Scholar
  125. Zizumbo-Villarreal D, Flores-Silva A, Marín PC (2012) The archaic diet in Mesoamerica: incentive for milpa development and species domestication. Econ Bot 66(4):328–343CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Sarah Dohle
    • 1
  • Jorge Carlos Berny Mier y Teran
    • 2
  • Ashley Egan
    • 3
  • Theodore Kisha
    • 4
  • Colin K. Khoury
    • 5
    • 6
    Email author
  1. 1.Department of Plant SciencesDelaware Valley UniversityDoylestownUSA
  2. 2.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  3. 3.Smithsonian Institution, National Museum of Natural History, Department of BotanyWashington, DCUSA
  4. 4.USDA Agricultural Research Service, Western Regional Plant Introduction StationPullmanUSA
  5. 5.USDA, Agricultural Research Service, Center for Agricultural Resources Research, National Laboratory for Genetic Resources PreservationFort CollinsUSA
  6. 6.International Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations