Advertisement

Wild Genetic Resources of Minor Oil and Rubber Crops

  • Maria M. JenderekEmail author
  • Von Mark Cruz
  • Andrew Salywon
  • Diana Jasso de Rodriguez
  • Raúl Rodríguez García
  • José Ángel Villarreal Quintanilla
  • David A. Dierig
Chapter

Abstract

Jojoba (Simmondsia chinensis (Link) C. K. Schneid), lesquerella (Physaria fendleri (A. Gray) O’Kane & Al-Shehbaz), and guayule (Parthenium argentatum A. Gray) originate from semiarid climate zones of North America; meadowfoam (Limnanthes alba Hartw. ex Benth., Limnanthes bakeri J. T. Howell, Limnanthes douglasii R. Br.) is endemic to the western part of California, Oregon, and Southern Canada and grows around vernal pools and seasonally wet areas. This chapter discusses historic and current uses, domestication efforts, breeding, and cultivation challenges and describes the conservation status of the crops’ genetic resources. Meadowfoam and guayule are already cultivated on a limited industrial scale. Jojoba and lesquerella are not grown commercially in North America but are economically important in countries beyond the Americas and are of particular interest to nations with extensive areas of arid lands. North America is an important source of wild genetic resources for these crops, and further efforts are needed to ensure their conservation.

Keywords

Oil crops Limnanthes Lesquerella Simmondsia Rubber crop Parthenium 

References

  1. Abbassy MA, Abdelgaleil SA, Belal ASH, Rasoul MAA (2007) Insecticidal, antifeedant and antifungal activities of two glucosides isolated from the seeds of Simmondsia chinensis. Ind Crop Prod 26:345–350CrossRefGoogle Scholar
  2. Agrawal V, Prakash S, Gupta SC (2002) Effective protocol for in vitro shoot production through nodal explants of Simmondsia chinensis. Biol Plant 45(3):449–453CrossRefGoogle Scholar
  3. Agricultural Marketing Resource Center (2012) Meadowfoam. Profile reviewed July. http://www.agmrc.org/commodities-products/grains-oilseeds/meadowfoam/. Accessed 2 Mar 2017
  4. Ahmed NS, Nassar AM, Nasser RM (2015) Jojoba modified polymers as performance modifiers additives for engine oil. Ind Lubr Tribol 67(5):425–433CrossRefGoogle Scholar
  5. Al-Ani HA, Strain BR, Mooney HA (1972) The physiological ecology of diverse populations of the desert shrub Simmondsia chinensis. J Ecol 60:41–57CrossRefGoogle Scholar
  6. Al-Hamamre Z (2013) Jojoba is a possible alternative green fuel for Jordan. Energ Source Part B 8:217–226CrossRefGoogle Scholar
  7. Al-Hamamre Z, Al-Salaymeh A (2014) Physical properties of (jojoba oil+ biodiesel), (jojoba oil+ diesel) and (biodiesel+ diesel) blends. Fuel 123:175–188CrossRefGoogle Scholar
  8. Al-Soqeer A (2010) Establishment and early growth of some jojoba clones in Al-Qassim region. J Agron 9:157–162CrossRefGoogle Scholar
  9. Amarger V, Mercier L (1996) Nuclear ribosomal DNA unit length variation: a putative marker of genetic diversity in jojoba. Int J Plant Sci 157:296–302CrossRefGoogle Scholar
  10. Andressen D, Manoochehri I, Carletti S, Llorente B, Tacoronte M, Vielma M (2009) Optimization of the in vitro proliferation of jojoba (Simmondsia chinensis (Link) Schn.) by using rotable central composite design and inoculation with rhizobacteria. Bioagro 21:41–48Google Scholar
  11. Angulo-Sánchez JL, Jasso de Rodríguez D, Rodríguez-García R (2002) Relationship between guayule biomass production, rubber synthesis, and climatic conditions. In: Janick J, Whipkey A (eds) Trends in new crop and new uses. ASHS Press, Alexandria, pp 234–239Google Scholar
  12. Arroyo de Kalin MT (1975) Electrophoretic studies of genetic variation in natural populations of allogamous Limnanthes alba and autogamous Limnanthes floccosa (Limnanthaceae). Heredity 35:153–164CrossRefGoogle Scholar
  13. Ayanoğlu F (2000) Jojoba [Simmondsia chinensis (Link) Schneider] and its cultivation in Turkey. I. Morphology, production and cultivation of jojoba. Anadolu 10:18–30Google Scholar
  14. Ayres DR, Sloop CM, Showers MA (2008) Genetic structure of three endangered plants of the Santa Rosa Plain: Burke’s goldfields (Lasthenia burkei), Sonoma sunshine (Blennosperma bakeri), and Sebastopol meadowfoam (Limnanthes vinculans). Report: genetic structure of three endangered plants, 21 May 2008Google Scholar
  15. Bagby MO, Smith CR, Miwa TK, Lohmar RL, Wolf IA (1961) A unique fatty acid from Limnanthes douglasii seed oil: the C22 diene. J Org Chem 26:1261–1265CrossRefGoogle Scholar
  16. Barclay AS, Gentry HS, Jones Q (1962) The search for new industrial crops II: Lesquerella (Cruciferae) as a source of new oilseeds. Econ Bot 16:95–100CrossRefGoogle Scholar
  17. Barry SJ (1998) Managing the Sacramento Valley vernal pool landscape to sustain the native flora. In: Ecology, conservation and management of vernal pool ecosystems—proceedings from a 1996 conference. California Native Plant Society, Sacramento, pp 236–240Google Scholar
  18. Bartelt RJ, Mikolajczak K (1989) Toxicity of compounds derived from Limnanthes alba seed to fall armyworm (Lepidoptera: Noctuidae) and European corn borer (Lepidoptera: Pyralidae) larvae. J Econ Entomol 82:1054–1060CrossRefGoogle Scholar
  19. Bayer C, Appel O (2003) Limnanthaceae. In: Kubitzki K, Bayer C (eds) Flowering plants·dicotyledons. Springer, Berlin Heidelberg, pp 220–224Google Scholar
  20. Beauchamp RM (1986) A flora of San Diego County, California. Sweetwater River Press, National CityGoogle Scholar
  21. Beier RC, Kubena LF, McReynolds JL, Byrd II JA, Hume ME, Evangelista RL, Isbell T, Dierig DA (2014) Evaluation of the safety and efficacy of Lesquerella fendleri seed and oils as poultry feed additives. Clear Blue Knowledge, pp 1–10Google Scholar
  22. Bekheet SA, Matter MA, Taha HS, El-Ashry AA (2016) In vitro conservation of jojoba (Simmondsia chinensis) shootlet cultures using osmotic stress and low temperature. Middle East J Agri 5:396–4012Google Scholar
  23. Benzioni A (1978) Fruit development and wax biosynthesis in jojoba. New Phytol 81:105–109CrossRefGoogle Scholar
  24. Benzioni A (1995) Jojoba domestication and commercialization in Israel. Hortic Rev 17:233–266Google Scholar
  25. Benzioni A, Dunstone RL (1986) Jojoba: adaptation to environmental stress and the implications for domestication. Q Rev Biol 61:177–199CrossRefGoogle Scholar
  26. Benzioni A, Nerd A (1985) Effect of irrigation and fertilization on vegetative growth and yield of jojoba in relation to water status of the plants. In: Wisniak J, Zabicky J (eds) Jojoba proceedings of the 6th international conference on Jojoba and its uses. Ben-Gurion University of the Negev, Beer-Sheva, pp 201–212Google Scholar
  27. Benzioni A, Shiloh E, Ventura M (1999) Yield parameters in young jojoba plants and their relation to actual yield in later years. Ind Crop Prod 10:85–95CrossRefGoogle Scholar
  28. Berlinger MJ, Segre L, Podoler H, Taylor RAJ (1999) Distribution and abundance of the oleander scale (Homoptera: Diaspididae) on jojoba. J Econ Entomol 92:1113–1119CrossRefGoogle Scholar
  29. Berrichi A, Tazi R, Belliro A, Kouddane N, Bouali A (2010) Role of salt stress on seed germination and growth of jojoba plant Simmondsia chinensis (Link) Schneider. IUFS J Biol 69:95–102Google Scholar
  30. BGCI, Botanic Gardens Conservation International (2017) Plant search database. BGCI US, San Marino. https://www.bgci.org/plant_search.php. Accessed 18 Jan 2017
  31. Bhardwaj M, Uppal S, Jain S, Kharb P, Dhillon R, Jain RK (2010) Comparative assessment of ISSR and RAPD marker assays for genetic diversity analysis in jojoba [Simmondsia chinensis (Link) Schneider]. J Plant Biochem Biotechnol 19:255–258CrossRefGoogle Scholar
  32. Bhatnagar N, Bhandari DC, Dwivedi NK, Rana RS (1991) Performance and potential of jojoba in the Indian arid regions. Ind J Plant Genet Res 4:57–66Google Scholar
  33. Bliss SA, Zedler PH (1998) The germination process in vernal pools: sensitivity to environmental conditions and effects on community structure. Oecologia 113(1):67–73CrossRefGoogle Scholar
  34. Bonner J (1975) The history of rubber In: Whitworth, JW, Whitehead, EE (eds) Guayule natural rubber. USDA Cooperative State Research Service. p 1–16Google Scholar
  35. Botti C, Prat L, Palzkil D, Cánaves L (1998) Evaluation of jojoba clones grown under water and salinity stresses in Chile. Ind Crop Prod 9:39–45CrossRefGoogle Scholar
  36. Brieva H, Russ JG, Sandevicz IM (1999) U.S. Patent No. 5,985,298. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  37. Brigham RD (1993) Castor: return of an old crop. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 380–383Google Scholar
  38. Brooks WH (1978) Jojoba: North American desert shrub; its ecology, possible commercialization, and potential as an introduction into other arid regions [Simmondsia chinensis]. J Arid Environ (US) 1(3):227–236CrossRefGoogle Scholar
  39. Brooks RT (2009) Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Clim Chang 95:469–483CrossRefGoogle Scholar
  40. Brown R (1833) Characters and description of Limnanthes. Lond Edinb Philos Mag 3:70–71Google Scholar
  41. Brown JH, Kleiman R, Hill JC (2004) U.S. Patent No. 6,706,768. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  42. Brown A, McMahan CM, Shintani D, Duckworth RE, Whalen CM (2008) Development of microsatellite in Parthenium ssp. In: Proceeding Annual Meeting of the Association Advancement of Industrial Crops. https://www.ars.usda.gov/research/publications/publication/?seqNo115=234903
  43. Buchanan RA, Duke JA (1981) Botanochemical crops. In: TA MC, Lipinsky ES (eds) CRC handbook of biosolar resources, Resource materials, vol II. CRC Press, Boca Raton, pp 157–179Google Scholar
  44. Buchmann SL (1987) Floral biology of jojoba (Simmondsia chinensis), an anemophilous plant. In: Desert plants. University of Arizona, Tucson, pp 111–124Google Scholar
  45. Busson-Breysse J, Farines M, Soulier J (1994) Jojoba wax: its esters and some of its minor components. J Am Oil Chem Soc 71:999–1002CrossRefGoogle Scholar
  46. Buxton EG (2013) A new subspecies of Limnanthes (Limnanthaceae) from San Mateo County, California. Madrono 60(3):229–235CrossRefGoogle Scholar
  47. Cabin RJ (1996) Genetic comparisons of seed bank and seedling populations of a perennial desert mustard, Lesquerella fendleri. Evolution 50:1830–1841PubMedCrossRefGoogle Scholar
  48. Cabin RJ, Marshall DL (2000) The demographic role of soil seed banks. I. Spatial and temporal comparisons of below- and above-ground populations of the desert mustard Lesquerella fendleri. J Ecol 88:283–292Google Scholar
  49. Cabin RJ, Mitchell RJ, Marshall DL (1998) Do surface plant and soil seed bank populations differ genetically? A multipopulation study of the desert mustard Lesquerella fendleri (Brassicaceae). Am J Bot 85:1098–1109PubMedCrossRefGoogle Scholar
  50. Calflora (2017) Taxon report 4834. Limnanthes gracilis Howell ssp. parishii (Jepson) Beauch. http://www.calflora.org/cgi-bin/species_query.cgi?where-taxon=Limnanthes+gracilis+ssp.+parishii. Accessed 14 Mar 2017
  51. Calhoun W, Crane JM (1975) Registration of ‘Foamore’ meadowfoam. Oregon Agr. Exp. Sta., CorvallisGoogle Scholar
  52. Calhoun W, Crane JM (1984) Registration of ‘Mermaid’ meadowfoam. Oregon Agr. Exp. Sta., CorvallisGoogle Scholar
  53. California Department of Fish and Wildlife (CDFW) (2017a) Butte county meadowfoam. (Limnanthes floccosa ssp. californica) https://www.wildlife.ca.gov/Conservation/Plants/Endangered/Limnanthes-floccosa-ssp-californica. Accessed 17 Mar 2017
  54. California Department of Fish and Wildlife (CDFW) (2017b) Scientific collecting permits. https://www.wildlife.ca.gov/Licensing/Scientific-Collecting. Accessed 18 Mar 2017
  55. California Department of Fish and Wildlife (CDFW) (2017c) Sebastopol meadowfoam (Limnanthes vinculans) https://www.wildlife.ca.gov/Conservation/Plants/Endangered/Limnanthes-vinculans. Accessed 17 Mar 2017
  56. Canoira L, Alcantara R, García-Martínez MJ, Carrasco J (2006) Biodiesel from Jojoba oil-wax: transesterification with methanol and properties as a fuel. Biomass Bioenergy 30:76–81CrossRefGoogle Scholar
  57. Cappillino P, Kleiman R, Botti C (2003) Composition of Chilean jojoba seeds. Ind Crop Prod 17:177–182CrossRefGoogle Scholar
  58. Carlquist S (1982) Wood anatomy of Buxaceae: correlations with ecology and phylogeny. Flora 172:463–491CrossRefGoogle Scholar
  59. Carlson KD, Chaudhry A, Bagby MO (1990) Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem Soc 67:438–442CrossRefGoogle Scholar
  60. Casillas Romo A (1990) Nostalgia mítica de un pueblo: medicina tradicional huichola. Editorial Universidad de Guadalajara, Guadaljara, p 158Google Scholar
  61. Castetter EF, Underhill RM (1935) The ethnobiology of the Papago Indians. UNM Bullet 25:1–84Google Scholar
  62. Catling PM, Porebski S (1998) Rare wild plants of potential or current economic importance in Canada – a list of priorities. Can J Plant Sci 78:653–658CrossRefGoogle Scholar
  63. Cermak SC, Evangelista R (2013) Lubricants and functional fluids from Lesquerella oil. In: Bireshaw G, Mittal KL (eds) Surfactants in tribology, vol 3. CRC Press, Boca Raton, pp 195–226CrossRefGoogle Scholar
  64. Cermak SC, Brandon KB, Isbell TA (2006) Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind Crop Prod 23:54–64CrossRefGoogle Scholar
  65. Cermak SC, Biresaw G, Isbell TA, Evangelista RL, Vaughn SF, Murray R (2013) New crop oils – properties as potential lubricants. Ind Crop Prod 44:232–239CrossRefGoogle Scholar
  66. Champawat RS, Panwar MS, Singh S (2003) Three new species of Fusarium causing wilt of Simmondsia chinensis (jojoba) from India. Res Crop 4:146–147Google Scholar
  67. Chaturvedi HC, Sharma M (1989) In vitro production of cloned plants of jojoba (Simmondsia chinensis (Link) Schneider) through shoot proliferation in long-term culture. Plant Sci 63:199–207CrossRefGoogle Scholar
  68. Cheng C, Gordon IL (2000) The Richards function and quantitate analysis of germination and dormancy in meadowfoam (Limnanthes alba). Seed Sci Res 10:265–277CrossRefGoogle Scholar
  69. Clarke JA, Yermanos DM (1980) Jojoba-Variability in oil content and composition in a collection of 1156 native plants. J Am Oil Chem Soc 57:176–178CrossRefGoogle Scholar
  70. Clavigero FS (1789) Storia della California, vol 1. Appresso Modesto Fenzo, Venezia, p 54Google Scholar
  71. CNHP (2017) CNHP vascular plant species. Colorado Native Heritage Program (CNHP), Colorado State University, Fort Collins. http://www.cnhp.colostate.edu/download/list/vascular.asp. Accessed 4 June 2017
  72. Coates W, Ayerza R, Palzkill D (2006) Supplemental pollination of jojoba—a means to increase yields. Ind Crop Prod 24:41–45CrossRefGoogle Scholar
  73. Coffelt T, Johnson BL (2011) A set of descriptors for evaluating guayule germplasm. Ind Crop Prod 34:1252–1255CrossRefGoogle Scholar
  74. Cole DF (1974) Effect of light and temperature on germination of two accessions of Limnanthes alba seed. Econ Bot 28:155–159CrossRefGoogle Scholar
  75. Cother EJ, Noble D, Peters BJ, Albiston A, Ash GJ (2004) A new bacterial disease of jojoba (Simmondsia chinensis) caused by Burkholderia andropogonis. Plant Pathol 53:129–135CrossRefGoogle Scholar
  76. Crane JM, Knapp SJ (2002) Registration of ‘Wheeler’ meadowfoam. Crop Sci 42(6):228CrossRefGoogle Scholar
  77. Cruz VMV, Comas LH, Dierig DA (2012a) Survey of root variation in lesquerella (Physaria fendleri) and analysis of response to temperature treatments. ASA, CSSA, and SSSA international annual meetings, Cincinnati, 21–24 Oct 2012Google Scholar
  78. Cruz VMV, Romano G, Dierig DA (2012b) Effects of after-ripening and storage regimens on seed-germination behavior of seven species of Physaria. Ind Crop Prod 35:185–191CrossRefGoogle Scholar
  79. Cruz VMV, Kilian A, Dierig DA (2013a) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS One 8:e64062. https://doi.org/10.1371/journal.pone.0064062CrossRefPubMedPubMedCentralGoogle Scholar
  80. Cruz VMV, Walters C, Dierig DA (2013b) Dormancy and after-ripening response of seeds from natural populations and conserved Physaria (syn. Lesquerella) germplasm and their association with environmental and plant parameters. Ind Crop Prod 45:191–199CrossRefGoogle Scholar
  81. Cruz VMV, Niaura WS, Pantel A, Dierig DA (2015). Development of SSR and SNP molecular markers for guayule breeding. In: Proceeding annual meeting of the association advancement of industrial crops, Lubbock, 18–22 Oct 2015Google Scholar
  82. Daugherty PM, Sineath HH, Wastler TA (1958) Industrial raw materials of plant origin. IV. A survey of Simmondsia chinensis (Jojoba). Econ Bot 12:296–304CrossRefGoogle Scholar
  83. Desert Botanical Garden (2017) A living collections management system. Desert Botanical Garden, Phoenix. http://livingcollections.org/dbg/Home.aspx. Accessed 5 June 2017
  84. Dierig DA, Ray DT (2009) New crops breeding: Lesquerella. In: Vollman J, Rajcan I (eds) Oil crops, handbook of plant breeding, vol 4. Springer, New York, pp 507–516Google Scholar
  85. Dierig DA, Thompson AE, Nakayama FS (1993) Lesquerella commercialization efforts in the United States. Ind Crop Prod 1:289–293CrossRefGoogle Scholar
  86. Dierig DA, Thompson AE, Coffelt TA, Arnold SE, Dahlquist GH (1995) Evaluations and plant descriptors of new collections of Lesquerella fendleri. Hortscience 30:814CrossRefGoogle Scholar
  87. Dierig DA, Coffelt TA, Nakayama FS, Thompson AE (1996a) Lesquerella and Vernonia: Oilseeds for arid lands. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 347–354Google Scholar
  88. Dierig DA, Thompson AE, Rebman JP, Kleiman R, Phillips BS (1996b) Collection and evaluation of new Lesquerella and Physaria germplasm. Ind Crop Prod 5:53–63CrossRefGoogle Scholar
  89. Dierig DA, Tomasi PM, Salywon AM, Ray DT (2004) Improvement of hydroxy fatty acid seed oil content and other traits from interspecific hybrids of three Lesquerella species: Lesquerella fendleri, L. pallida, and L. lindheimeri. Euphytica 139:199–206CrossRefGoogle Scholar
  90. Dierig DA, Salywon AM, Tomasi PM, Dahlquist GH, Isbell T (2006a) Variation of seed oil composition in parent and S1 generations of Lesquerella fendleri (Brassicaceae). Ind Crop Prod 24:274–279CrossRefGoogle Scholar
  91. Dierig DA, Adam NR, Mackey BE, Dahlquist GH, Coffelt TA (2006b) Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Ind Crop Prod 24:17–25CrossRefGoogle Scholar
  92. Dole JA, Sun M (1992) Field and genetic survey of the endangered Butte County meadowfoam—Limnanthes floccosa subsp. californica (Limnanthaceae). Conserv Biol 6:549–558CrossRefGoogle Scholar
  93. Donnelly LM, Jenderek MM, Prince JP, Reeves PA, Brown A, Hannan RM (2008) Genetic diversity in the USDA Limnanthes germplasm collection assessed by simple sequence repeats. Plant Genet Resour 7:33–41CrossRefGoogle Scholar
  94. Dresdner Jr KP, Dangman KH, Jazlowiecki EA (1994) U.S. Patent No. 5,357,636. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  95. Du X, Ge X, Zhao Z, Li Z (2008) Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27:261–271PubMedCrossRefGoogle Scholar
  96. Duke JA (1983) Handbook of energy crops. https://hort.purdue.edu/newcrop/duke_energy/Lesquerella_fendleri.html. Accessed 6 May 2017
  97. Dunstone RL, Begg JE (1983) Jojoba: a potential crop for Australia. Aust Inst Agric Sci 49:51–59Google Scholar
  98. Dunstone RL, Tonnet ML, Wardlaw IF, Shani A (1984) Effect of temperature on seed development in jojoba (Simmondsia chinensis (Link) Schneider). II. Wax content and composition. Crop Pasture Sci 35:693–700CrossRefGoogle Scholar
  99. Earle FR, Melvin EH, Mason LH, Van Etten CH, Wolff IA (1959) Search for new industrial oils. I. Selected oils from 24 plant families. J Am Oil Chem Soc 36:304–307CrossRefGoogle Scholar
  100. ECOS (2017a) Environmental conservation online system (ECOS). U.S. Fish and Wildlife Service. https://ecos.fws.gov/ecp0/reports/ad-hoc-species-report-input. Accessed 6 Apr 2017
  101. ECOS (2017b) Environmental conservation online system (ECOS) U.S. Fish and Wildlife Service. https://ecos.fws.gov/ecp0/profile/speciesProfile?spcode=Q2CL. Accessed 7 Oct 2017
  102. Eed AM, Burgoyne AH (2015) Propagation of Simmondsia chinensis (Link) Schneider by stem cuttings. Biol Chem Res:268–275Google Scholar
  103. Ehrensing DT, Jolliff GD, Crane JM, Karow RS (1997) Growing meadowfoam in the Willamette Valley. EM 8567, Oregon State University Extension Service, CorvallisGoogle Scholar
  104. Endangered Species Act of 1973 (1973) Public law 93-205. U.S. statutes at large. 87:884–903Google Scholar
  105. Engeseth N, Stymne S (1996) Desaturation of oxygenated fatty acids in Lesquerella and other oil seeds. Planta 198(238):245Google Scholar
  106. Erickson FL, Anderson RE, Landis PS (1990) Meadowfoam oil and meadowfoam oil derivatives as lubricant additives. U.S. Patent US4925581Google Scholar
  107. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71CrossRefGoogle Scholar
  108. Esau K (1944) Apomixis in guayule. Proc Nat Acad Sci 30:352–355PubMedCrossRefGoogle Scholar
  109. Esau K (1946) Morphology and reproduction in guayule and certain other species of Parthenium. Hilgardia 17:61–101CrossRefGoogle Scholar
  110. Estilai A, Hashemi A, Waines J (1990) Isozyme markers for cultivar identification in guayule. Hort Sci 25:346Google Scholar
  111. EuroBioRef (2015) EUROpean multilevel integrated BIOREFinery design for sustainable biomass processing. EuroBioRef - 153157 - Final report summary. http://cordis.europa.eu/result/rcn/153157_en.html. Accessed 3 June 2017
  112. Felger RS, Rutman S (2016) Ajo Peak to Tinajas Atlas. A flora of southwestern Arizona Part 19. Eudicots: Polygalaceae to Simmondsia. Phytoneuron 47:1–71Google Scholar
  113. Foster KE, Karpiscak MM, Taylor JG, Wright N (1983) Guayule, jojoba, buffalo gourd and Russian thistle: plant characteristics, products and commercialization potential. Desert plants. http://arizona.openrepository.com/arizona/bitstream/10150/552212/1/dp_05_03-112-126.pdf. accessed 1 Sept 2017
  114. Foster MA, Coffelt TA, Petty AK (2011) Guayule production on the southern high plains. Ind Crop Prod 43:1418–1422Google Scholar
  115. Fowler NL, Price DM, Best CF, Hempel A (2009) Status and habitat requirements of Physaria thamnophila, an endangered species of Tamaulipan thornscrub. In: Proceeding 94th ESA Annual Meeting, Albuquerque, 2–9 August 2009Google Scholar
  116. Franco-Viziano E, Khattack RA (1990) Elemental composition of soils and tissues of natural jojoba populations of Baja California. Mexico J Arid Environ 19:55–63CrossRefGoogle Scholar
  117. Gachotte DJ, Merlo AO, Thompson MA, Walsh TA, Wilson BR, Welter M (2014) Generation of transgenic canola with low or no saturated fatty acids. United States patent US 9617555 B2Google Scholar
  118. Genesys (2017) GENESYS: gateway to genetic resources. https://www.genesys-pgr.org. Accessed 5 June 2017
  119. Gentry HS (1958) The natural history of jojoba (Simmondsia chinensis) and its cultural aspects. Econ Bot 12:261–295CrossRefGoogle Scholar
  120. Gentry HS (1972) Supplement to the natural history of jojoba. In: Haase EF, McGinnies WG (eds) Proceedings of Jojoba and its uses, An International Conference, Tucson, 11–12, June 11–12Google Scholar
  121. Gentry HS, Miller RW (1965) The search for new industrial crops IV. Prospectus of Limnanthes. Econ Bot 19(1):25–32CrossRefGoogle Scholar
  122. Godoy E (2011) Desert’s wealth is wasted in Mexico. IPS. Tierramérica, Environment and Development. http://www.ipsnews.net/2011/10/desertrsquos-wealth-is-wasted-in-mexico/. Accessed 14 Sept 2017
  123. Goedde GL, Gauger GA, Lapp J, Yerges AP (1998) U.S. Patent No. 5,766,517. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  124. Green TG, Hilditch TP, Stainsby WJ (1936) The seed wax of Simmondsia californica. J Chem Soc 2:1750–1755CrossRefGoogle Scholar
  125. Griggs FT, Jain SK (1983) Conservation of vernal pool plants in California, II. Population biology of a rare and unique grass genus Orcuttia. Biol Conserv 27:171–193CrossRefGoogle Scholar
  126. Grossman D (2004) Spring forward. Sci Am 290:84–91PubMedGoogle Scholar
  127. Gunstone F (2009) Meadowfoam (Limnanthes alba). In: The chemistry of oils and fats: sources, composition, properties and uses. Wiley, New York, p 17Google Scholar
  128. Habashy RR, Abdel-Naim AB, Khalifa AE, Al-Azizi MM (2005) Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol Res 51:95–105PubMedCrossRefGoogle Scholar
  129. Hagler JR, Tassone J, Coffelt TA, Lipka AE (2016) Host plant preference of Lygus hesperus exposed to three desert-adapted industrial crops. Ind Crop Prod 89:363–367CrossRefGoogle Scholar
  130. Hamerlynck EP, Huxman TE (2009) Ecophysiology of two Sonoran Desert evergreen shrubs during extreme drought. J Arid Environ 73:582–585CrossRefGoogle Scholar
  131. Hammond BL, Polhamus LG (1965) Research on Guayule (Parthenium argentatum): 1942–1959. Tech Bul no. 1327Google Scholar
  132. Harington T (1987) Commercial jojoba acres and yield. Jojoba Happenings 15:7Google Scholar
  133. Harry-O’kuru RE, Mohamed A, Abbott TP (2005) Synthesis and characterization of tetrahydroxyjojoba wax and ferulates of jojoba oil. Ind Crop Prod 22:125–133CrossRefGoogle Scholar
  134. Hashemi A, West JE, Waines JG (1986) Chromosome pairing and pollen fertility in interspecific hybrids of species of Parthenium (Asteraceae). Amer J Bot 17:980–988CrossRefGoogle Scholar
  135. Hassan F, Ali E (2014) Effects of salt stress on growth, antioxidant enzyme activity and some other physiological parameters in jojoba [‘Simmondsia chinensis’(Link) Schneider] plant. AJ CS 8:1615Google Scholar
  136. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10(Part A):4–10CrossRefGoogle Scholar
  137. Haury E (1937) A PreSpanish rubber ball from Arizona. Am Antiq 2:282–288CrossRefGoogle Scholar
  138. Hegazi GA, Zayed MS, Salem HS, Ibrahim WM (2014) Effect of explant type and sequential subcultures on in vitro multiple shoots formation of jojoba. J Appl Environ Biol Sci 4:214–222Google Scholar
  139. Heikrujam M, Sharma K, Kumar J, Agrawal V (2014) Generation and validation of unique male sex-specific sequence tagged sites (STS) marker from diverse genotypes of dioecious Jojoba-Simmondsia chinensis (Link) Schneider. Euphytica 199:363–372CrossRefGoogle Scholar
  140. Heikrujam M, Kumar J, Agrawal V (2015) Genetic diversity analysis among male and female jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene 5:90–97PubMedPubMedCentralCrossRefGoogle Scholar
  141. Higgins JJ, Calhoun W, Willingham BC, Dinkel DH, Raisler WL, White GA (1971) Agronomic evaluation of perspective new crop species. 2. The American Limnanthes. Econ Bot 25(1):44–54CrossRefGoogle Scholar
  142. Holland RF (1978) The geographic and edaphic distribution of vernal pools in the Great Central Valley, California (No. 4). California Native Plant Society, BerkeleyGoogle Scholar
  143. Holser RA, Carriere CJ, Park JS, Abbott TP (2000) Rheological characterization of jet-cooked Lesquerella fendleri seed gum and cornstarch solutions. Ind Crop Prod 11:243–247CrossRefGoogle Scholar
  144. Hussain G, Bashir MA, Ahmad M (2011) Brackish water impact on growth of jojoba (Simmondsia chinensis). J Agric Res 49(4):591–596Google Scholar
  145. IDNR (2017) Endangered, threatened, & rare vascular plants of Indiana. Indiana Department of Natural Resources (IDNR). http://www.in.gov/dnr/naturepreserve/files/np-etrplants.pdf. Accessed4 June 2017
  146. Ilut DC, Sanchez PL, Costich DE, Friebe B, Coffelt TA, Dyer JM, Jenks MA, Gore MA (2015) Genomic diversity and phylogenetic relationships in the genus Parthenium (Asteraceae). Ind Crop Prod 76:920–929CrossRefGoogle Scholar
  147. Ilut DC, Sanchez PL, Coffelt TA, Dyer JM, Jenks MA, Gore MA (2017) A century of guayule: comprehensive genetic characterization of the guayule (Parthenium argentatum A. Gray) USDA germplasm collection. Ind Crop Prod 109:300–309CrossRefGoogle Scholar
  148. Ince AG, Karaca M (2011) Early determination of sex in jojoba plant by CAPS assay. J Agric Sci 149:327CrossRefGoogle Scholar
  149. Ince AG, Karaca M, Onus AN (2010) A reliable gender diagnostic PCR assay for jojoba (Simmondsia chinensis (Link) Schneider). Genet Resour Crop Evol 57:773–779CrossRefGoogle Scholar
  150. Inoti SK (2016) Characterization, propagation and management of jojoba (Simmondsia chinensis L.) in semi-arid areas of Voi, Kenya (Doctoral dissertation). Sokoine University of Agriculture, Morogoro, TanzaniaGoogle Scholar
  151. Inoti SK, Chamshama SAO, Dodson R, Thagana WM, Lulandala LLL (2015) Studies on seed size and storage on germinability and performance of young Jojoba (Simmondsia chinensis L.) seedlings in semi-arid areas of Kenya. J Biol Agric Health 5:10–16Google Scholar
  152. Intanon S, Reed RL, Stevens JF, Hulting AG, Mallory-Smith CA (2014) Identification and phytotoxicity of new glucosinolate breakdown product from meadowfoam (Limnanthes alba) seed meal. J Argic Food Chem 62:7423–7429CrossRefGoogle Scholar
  153. Intanon S, Hulting AG, Mayrold DD, Mallory-Smith CA (2015) Short-term effect of soil amendment with meadowfoam seed meal on soil microbial composition and function. Appl Soil Ecol 89:85–92CrossRefGoogle Scholar
  154. Isbell TA, Cermak SC (2001) Synthesis of δ-eicosanolactone and δ-docosanolactone directly from meadowfoam oil. J Am Oil Chem Soc 78:527–531CrossRefGoogle Scholar
  155. Isbell TA, Abbott TP, Carlson KD (1999) Oxidative stability index of vegetable oils in binary mixtures with meadowfoam oil. Ind Crop Prod 9:115–123CrossRefGoogle Scholar
  156. Isbell TA, Lowery BA, DeKeyser SS, Winchell ML, Cermak SC (2006) Physical properties of triglyceride estolides from lesquerella and castor oils. Ind Crop Prod 23:256–263CrossRefGoogle Scholar
  157. Ismail AE, Mohamed MM, Mahfouz SA (2009) Effect of waste residues from black seed and jojoba seed oil extraction as organic amendments on Meloidogyne incognita, growth and oil of chamomile. Pak J Nematology 27:297–307Google Scholar
  158. ITIS Report (2017) Limnanthes alba ssp. gracilis (Howell) Morin). Taxonomy and nomenclature. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=896489#null. Accessed 4 Dec 2016
  159. Jahromi SMM, Fard AAP (2013) Comparison of growth characteristics and seed production in jojoba (Simmondsia chinensis) seedlings and cuttings. Iranian J Forest Poplar Res 21(1). AbstractGoogle Scholar
  160. Jain SK (1994) Genetics and demography of rare plants and patchily distributed colonizing species. In: Conservation genetics. Birkhäuser Verlag, Basel, pp 291–307CrossRefGoogle Scholar
  161. Jain SK, Abuelgasim EH (1981) Some yield components and ideotype traits in meadowfoam, a new industrial oil crop. Euphytica 30:437–443CrossRefGoogle Scholar
  162. Jain SK, Pierce RO, Hauptli H (1977) Meadowfoam potential new oil crop. Calif Agric 31(3):18–20Google Scholar
  163. Jenderek MM (2006) Ornamental characteristics of lesquerella (Lesquerella sp.) plants-Abstract. Hortci Sci 41:1028Google Scholar
  164. Jenderek MM, Dierig D (2008) Oil content in seeds of the NPGS jojoba (Simmondsia chinensis) germplasm collection. In: Program and abstracts of the AAIC, 20th annual meeting new crops and bioproducts development, College Station, 7–11 Sept 2008Google Scholar
  165. Jenderek MM, Hannan RM (2009) Diversity in seed production characteristics within the USDA-ARS Limnanthes alba germplasm collection. Crop Sci 49:1387–1394CrossRefGoogle Scholar
  166. Jenderek MM, Dierig DA, Isbell TA (2009) Fatty-acid profile of Lesquerella germplasm in the National Plant Germplasm System collection. Ind Crop Prod 29:154–164CrossRefGoogle Scholar
  167. Jensen MM (2011) Ecological and genetic consequences of habitat mitigation on an endangered California vernal pool plant: Sebastopol meadowfoam (Limnanthes vinculans). Doctoral dissertation, Purdue UniversityGoogle Scholar
  168. Jolliff GD, Hoffman GD (2002) Meadowfoam industry update. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 192–200Google Scholar
  169. Jolliff GD, Calhoun W, Crane JM (1984) Development of a self-pollinated meadowfoam from interspecific hybridization. Crop Sci 24(2):369–370CrossRefGoogle Scholar
  170. Jolliff GD, Tinsley IJ, Calhoun W, Crane JM (1981) Meadowfoam (Limnanthes alba): Its research and development as a potential new oilseed crop for the Willamette valley of Oregon. Oregon State University, Corvallis. Station Bulletin 648, November 1981Google Scholar
  171. Jones Q, Wolff IA (1960) The search for new industrial crops. Econ Bot 41:56–68CrossRefGoogle Scholar
  172. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210PubMedCrossRefGoogle Scholar
  173. Karron JD (1991) Patterns of genetic variation and breeding systems in rare plant species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 87–98Google Scholar
  174. Kehl KL, Erickson EH (1995) Floral structure of Lesquerella fendleri. Ind Crop Prod 4:213–217CrossRefGoogle Scholar
  175. Kesseli R, Jain S (1984) An ecological genetic study of gynodioecy in Limnanthes douglasii (Limnanathaceae). Amer J Bot 71(6):775–786CrossRefGoogle Scholar
  176. Kesseli RV, Jain SK (1985) Breeding systems and population structure in Limnanthes. Theor Appl Genet 71:292–299PubMedCrossRefGoogle Scholar
  177. Kesseli R, Jain S (1987) Origin of gynodioecy in Limnanthes: evidence from ecogeographic patterns of variation. Theor Appl Genet 74:379–386PubMedCrossRefGoogle Scholar
  178. Khan S, Agarwal S, Sharma V (2017) Biochemical and molecular studies on the commercial oil-yielding desert shrub Simmondsia chinensis (jojoba, a desert gold). In: Ahmad P (ed) Oilseed crops: yield and adaptations under environmental stress. Wiley, Chichester, pp 152–164CrossRefGoogle Scholar
  179. Kishore VK, Velasco P, Shintani DK, Rowe J, Rosato C, Adair N, Slabaugh MB, Knapp SJ (2004) Conserved simple sequence repeats for Limnanthaceae (Brassicales). Theor Appl Genet 108:450–457PubMedCrossRefGoogle Scholar
  180. Kling J (2017) Oregon State University, Corvallis, personal communicationGoogle Scholar
  181. Knapp SJ, Crane JM (1999) Breeding advances and germplasm resources in meadowfoam: a novel very long chain oilseed. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Virginia, pp 235–233Google Scholar
  182. Knapp SJ, Crane JM, Brunick R (2005) Registration of ‘Ross’ meadowfoam. Crop Sci 45:407CrossRefGoogle Scholar
  183. Kolodziejczyk PP, Lu W, Ayerza R, de Larminat MA (2000) Capillary electrophoresis: novel tool for simmondsins analysis and its application to jojoba breeding. Ind Crop Prod 12:193–202CrossRefGoogle Scholar
  184. Kothera L, Ward SM, Carney SE (2007) Assessing the threat from hybridization to the rare endemic Physaria bellii Mulligan (Brassicaceae). Biol Conserv 140:110–118CrossRefGoogle Scholar
  185. Krebs S, Jain SK (1985) Variation in morphological and physiological traits associated with yield in Limnanthes spp. New Phytol 101:717–729CrossRefGoogle Scholar
  186. Kumar S, Rai MK, Singh N, Mangal M (2010) Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution. Physiol Mol Biol Plants 16:379–382Google Scholar
  187. Kumar S, Mangal M, Dhawan AK, Singh N (2012) Biotechnological advances in jojoba [Simmondsia chinensis (Link) Schneider]: recent developments and prospects for further research. Plant Biotechnol Rep 6:97–106CrossRefGoogle Scholar
  188. Lambert JW, Johnson DL (1999) U.S. Patent No. 5,888,947. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  189. Lardans A, Trémoliérs A (1991) Accumulation of C20 and C22 unsaturated fatty acids in triacylglycerols from developing seeds of Limnanthes alba. Phytochemistry 30:3955–3961CrossRefGoogle Scholar
  190. Latorre DL (1977) Cooking & curing with herbs in Mexico: recipes and remedies gathered in Muzquiz. Coahuila Encino Press, Austin, p 178Google Scholar
  191. Le Dréau Y, Dupuy N, Gaydou V, Joachim J, Kister J (2009) Study of jojoba oil aging by FTIR. Anal Chimi Acta 642:163–170CrossRefGoogle Scholar
  192. Li XQ, Gao HD, Cao XJ, Li RW, Wang Z, Wang XL (2007) Photosynthetic characteristics of Simmondsia chinensis in the arid-hot valley of the Jinsha River. J of Zhejiang Forestry College 3:10. Abstract. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJLX200703010.htm. Accessed 1 Sept 2017
  193. Lusher S, Richardson DN (2015) Guayule plant extracts as recycling agents in hot mix asphalt with high reclaimed binder content. J Mater Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001238
  194. Mason CT (1952) A systematic study of the genus Limnanthes R. Br Univ of Calif Publ Bot 25:455–512Google Scholar
  195. McGinnies WG, Haase EF (1975) Guayule: a rubber-producing shrub for arid and semiarid regions. University of Arizona Arid Lands Resource Information Paper No. 7Google Scholar
  196. McKay S (1987) JGA acreage and harvest surveys 1986–1987. In: Proceeding Jojoba feasibility seminar, Los Angeles, 14 Nov 1987, p 28–31Google Scholar
  197. McKell CM (1983) Genetic resources of unexploited native plants. Plant Mol Biol Rep 1:89–94CrossRefGoogle Scholar
  198. McKenzie BA, Smallfield BM, Fasi V, Martin RJ (2011) Possible species for the production of biodiesel on marginal land. Agron N Z 41:97–107Google Scholar
  199. McNeill CI, Jain SK (1983) Genetic differentiation studies and polygenetic inference in the plant genus Limnanthes (section Inflexae). Theor Appl Genet 66:257–269PubMedCrossRefGoogle Scholar
  200. McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DJ, Marhold K, Wiersema JH (2006) International code of botanical nomenclature (Vienna Code) from: seventeenth International Botanical Congress Vienna, Austria, July 2005. Lichtenstein, Gantner Verlag, Reggell (Regnum Veg. vol 46)Google Scholar
  201. Mellado M, Olivares L, Pittroff W, Diaz H, López R, Villarreal JA (2007) Oral morphology and dietary choices of goats on rangeland. Small Rumin Res 71:194–199CrossRefGoogle Scholar
  202. Metzger JO (2009) Fats and oils as renewable feedstock for chemistry. Eur J Lipid Sci Technol 111:865–876CrossRefGoogle Scholar
  203. Meyers SC, Liston A, Menike R (2010) A molecular phylogeny of Limnanthes (Limnanthaceae) and investigation of anomalous Limnanthes population from California, U.S.A. Syst Bot 35:552–557CrossRefGoogle Scholar
  204. Miller RW, Daxenbichler ME, Earle FR, Gentry HS (1964) Search for new industrial oils. VIII. The genus Limnanthes. J Am Oil Chem Soc 41:167–169CrossRefGoogle Scholar
  205. Miller RE, Edwards RH, Kohler GO (1979) Pilot-plant scale grinding and pressing of jojoba seeds. J Am Oil Chem Soc 56:556–558CrossRefGoogle Scholar
  206. Mirov NT (1952) Simmondsia or Jojoba—a problem in economic botany. Econ Bot 6:41–47CrossRefGoogle Scholar
  207. Mitchell JW (1944) Winter hardiness in guayule. Bot Gaz 105:95–102CrossRefGoogle Scholar
  208. Mitchell RJ (1997) Effects of pollination intensity on Lesquerella fendleri seed set: variation among plants. Oecologia 109:382–388PubMedCrossRefGoogle Scholar
  209. Miwa TK (1971) Jojoba oil wax esters and derived fatty acids and alcohols: gas chromatographic analyses. J Am Oil Chem Soc 48:259–264CrossRefGoogle Scholar
  210. Miwa TK (1984) Structural determination and uses of jojoba oil. J Am Oil Chem Soc 61:407–410CrossRefGoogle Scholar
  211. Miwa TK, Wolff IA (1962) Fatty acids, fatty alcohols, and wax esters from Limnanthes douglasii (Meadowfoam) seed oil. J Am Oil Chem Soc 39:320–322CrossRefGoogle Scholar
  212. Mohasseb HA, El-Bahr MK, Adam ZM, Moursy HA, Solliman ME (2009) In vitro clonal propagation of jojoba (Simmondsia chinensis (Link) Schn.). Aust J Basic Appl Sci 3:3128–3136Google Scholar
  213. Moreau RA, Pollard MR, Stumpf PK (1981) Properties of a Δ5-fatty acyl-CoA desaturase in the cotyledons of developing Limnanthes alba. Arch Biochem Biophys 209:378–384CrossRefGoogle Scholar
  214. Moser BR, Cermak SC, Isbell TA (2008) Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow diesel fuels. Energy Fuel 22:1349–1352CrossRefGoogle Scholar
  215. Moser BR, Knothe G, Cermak SC (2010) Biodiesel from meadowfoam (Limnanthes alba L.) seed oil: oxidative stability and unusual fatty acid composition. Energy Environ Sci 3:318–327CrossRefGoogle Scholar
  216. Nagavi HH, Ting RP (1990) Jojoba: a unique liquid wax producer from American Desert. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland. https://hort.purdue.edu/newcrop/proceedings1990/V1-247.html. Accessed 19 Aug 2017
  217. Nakayama FS (2005) Guayule future development. Ind Crop Prod 22:3–13CrossRefGoogle Scholar
  218. Naqavi HH, Matsumura M, Ting IP (1990) Variability in seed characteristics of unselected and selected jojoba populations. Hortscience 25:364–364Google Scholar
  219. Naranjo SE, Stefanek MA (2012) Feeding behavior of a potential insect pest, Lygus hesperus, on four new industrial crops for the arid southwestern USA. Ind Crop Prod 37:358–361CrossRefGoogle Scholar
  220. Naranjo SE, Ellsworth PC, Dierig DA (2011) Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop. J Econ Entomol 104:1575–1583PubMedCrossRefGoogle Scholar
  221. Nassar AM, Ahmed NS, Nasser RM (2015) Jojoba polymers as lubricating oil additives. Pet Coal 57:120–129Google Scholar
  222. Native Plants, Inc (1981) Inventario de la distribución y volumen en pie de guayule (Parthenium argentatum, Gray) en el norte de México. Report presented to Centro de Investigación en Química Aplicada, Saltillo, Coahuila, p 42Google Scholar
  223. NatureServe (2017) NatureServe explorer. http://explorer.natureserve.org. Accessed 6 June 2017
  224. Nimir MN, Ali-Dinar HM (1989) Jojoba, a new cash crop in marginal lands. In: de Jager A, Verhaegh AP (eds) First international symposium on horticultural economics in developing countries, ISHS Acta Horticulturae, vol 270. International Society for Horticultural Science, Wageningen, pp 369–372Google Scholar
  225. Nyunt S, Grabe DF (1987) Induction of secondary dormancy in seeds of meadowfoam (Limnanthes alba Benth.). Seed Tech 11:103–110Google Scholar
  226. O’Kane SL Jr (1999) Lesquerella navajoensis (Brassicaceae), a new species of the L. hitchcockii complex from New Mexico. Madrono 46:88–91Google Scholar
  227. O’Kane Jr. SL (2006) Lesquerella parvula Greene (pygmy bladderpod): a technical conservation assessment. USDA Forest Service, Rocky Mountain region. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5206863.pdf. Accessed 31 May 2017
  228. O’Kane SL Jr (2007) Physaria scrotiformis (Brassicaceae), a new high-elevation species from southwestern Colorado and new combinations in Physaria. Novon 17:376–382CrossRefGoogle Scholar
  229. O’Kane SL Jr, Al-Shehbaz IA (2002) Paysonia, a new genus segregated from Lesquerella (Brassicaceae). Novon 2:379–381CrossRefGoogle Scholar
  230. O’Lenick AJ (1997) Guerbet meadowfoam esters. U.S. Patent US5646321 AGoogle Scholar
  231. O’Lenick AJ (1998) Meadowfoam betaines in personal care applications. U.S. Patent US5834516 AGoogle Scholar
  232. O’Lenick AJ (2001) Reconstituted medowfoam oil. U.S. Patent US6258965 B1Google Scholar
  233. O’Lenick AJ, Wohlman A (2001) Reconstituted meadowfoam oil in personal care applications. U.S. Patent US6180668 B1Google Scholar
  234. Oregon Department of Agriculture (2017) Dwarf meadowfoam (Limnanthes floccosa ssp. pumila). https://www.oregon.gov/ODA/shared/Documents/Publications/PlantConservation/LimnanthesFloccosaPumilaProfile.pdf. Accessed13 Mar 2017
  235. Ornduff R (1969) Limnanthes vinculans, a new California endemic. Brittonia 21:11–14CrossRefGoogle Scholar
  236. Ornduff R, Crovello TJ (1968) Numerical taxonomy of Limnanthaceae. Am J Bot 55:173–182CrossRefGoogle Scholar
  237. Orum TV, Alcorn SM, Herrera-Perez T, Miller G (1981) Susceptibility of jojoba (Simmondsia chinensis) to Verticillium dahliae and Phymatotrichum omnivorum. Plant Dis 65:243–245Google Scholar
  238. Orum TV, Alcorn SM, Palzkill DA (1983) Epidemiology of Verticillium dahliae in a jojoba planting near Bakersfield, California. Jojoba:43Google Scholar
  239. Osman HE, Abohassan AA (2013) Introducing jojoba in the Arabian desert: 1. Agronomic performance of nine jojoba clones selected in Makkah area in Northern and Western Saudi Arabia. IJTAS 5:37–46Google Scholar
  240. Osman HE, Hassan AA (2000) Phenotypic diversity and characterization of jojoba populations established in western Saudi Arabia. Arab Gulf J Sci Res 18:15–22Google Scholar
  241. Palzkill DA, Feldman WR (1993) Optimizing rooting of jojoba stem cuttings: effects of basal wounding, rooting medium and depth of insertion in medium. J Am Oil Chem Soc 70:1221–1224CrossRefGoogle Scholar
  242. Palzkill DA, Hogan L (1983) Jojoba seed yield from a seedling planting at Mesa, Arizona, and from a cutting-grown planting near Bakersfield, California. Jojoba:231Google Scholar
  243. Panasahatham S (2000) Biology, ecology and management of Scaptomyza apicalis Hardy (Diptera: Drosophilidae) on meadowfoam, Limnanthes alba Benth. Western Oregon. Ph.D. Dissertation, Oregon State University, CorvallisGoogle Scholar
  244. Panjabi S, Neely B (2010) Piceance Basin Conservation Action Plan 2011 Update. Prepared by The Nature Conservancy and the Colorado Natural Heritage Program. Report prepared for the National Fish and Wildlife Foundation. http://www.cnhp.colostate.edu/download/documents/2011/Piceance_Basin_CAP_Update_August_25_2011.pdf. Accessed 1 June 2017
  245. Panjabi SS, Smith G (2014) Recommended best management practices for Bell’s twinpod (Physaria bellii): practices developed to reduce the impacts of road maintenance activities to plants of concern. Colorado Natural Heritage Program, Colorado State University, Fort CollinsGoogle Scholar
  246. Parker WH, Bohm BA (1975) Flavonol glycosides of Limnanthes douglasii. Phytochemistry 14:553–555CrossRefGoogle Scholar
  247. Patel NK, Patel AK, Kapadia RG, Shah SN (2015) Comparative study of production and performance of bio-fuel obtained from different non-edible plant oils. Int J Ener Eng 5:41–47Google Scholar
  248. Phillips BE, Smith CR, Tallent WH (1971) Glycerides of Limnanthes douglasii seed oil. Lipids 6:93–99CrossRefGoogle Scholar
  249. Pierce RO, Jains K (1977) Variation in some plant and seed oil characteristics of meadowfoam. Crop Sci 17:521–526CrossRefGoogle Scholar
  250. Ploschuk EL, Cerdeiras G, Windauer L, Dierig DA, Ravetta DA (2003) Development of alternative Lesquerella species in Patagonia (Argentina): potential of Lesquerella angustifolia. Ind Crop Prod 18:1–6CrossRefGoogle Scholar
  251. Plotkin M (1998) Phylogeny and biogeography of Limnanthace. M.S. thesis, University of California, DavisGoogle Scholar
  252. Pollard MR, Stumpf PK (1980) Biosynthesis of C20 and C22 fatty acids by developing seeds of Limnanthes alba: chain elongation and d5 desaturation. Plant Physiol 66:649–655PubMedPubMedCentralCrossRefGoogle Scholar
  253. Prat L, Botti C, Palzkill D (1998) Rooting of jojoba cuttings: the effect of clone, substrate composition and temperature. Ind Crop Prod 9:47–52CrossRefGoogle Scholar
  254. Princen LH (1979) New crop developments for industrial oils. J Am Oil Chem Soc 56:845–848CrossRefGoogle Scholar
  255. Princen LH (1983) New oilseed crops on the horizon. Econ Bot 37:478–492CrossRefGoogle Scholar
  256. Puppala N, Fowler JL (2002) Lesquerella seed pretreatment to improve germination. Ind Crop Prod 7:61–69Google Scholar
  257. Purcell HC, Purcell HC II (1988) Jojoba crop improvement through genetics. In: Baldwin AR (ed) Proceedings of the seventh international conference on Jojoba and its uses. American Oil Chemists’ Society, Champaign, pp 69–85Google Scholar
  258. Purcell HC, Abbott TP, Holser RA, Phillips BS (2000) Simmondsin and wax ester levels in 100 high-yielding jojoba clones. Ind Crop Prod 12:151–157CrossRefGoogle Scholar
  259. Purdy RH, Craig CD (1987) Meadowfoam: new source of long-chain fatty acids. J Am Oil Chem Soc 64:1493–1498CrossRefGoogle Scholar
  260. Putnam MI, Glawe DA (2007) New North American records of anamorphic powdery mildew fungi (Erysiphales) parasitizing species of Leucothoë and Limnanthes. Pac Northwest Fungi 2:1–6Google Scholar
  261. Pyke CR (2004) Habitat loss confounds climate change impacts. Front Ecol Environ 2:178–182CrossRefGoogle Scholar
  262. Pyke CR, Marty J (2005) Cattle grazing mediates climate change impacts on ephemeral wetlands. Cons Biol 19:1619–1625CrossRefGoogle Scholar
  263. Quiroga D, Arretz P, Araya JE (1991) Sucking insects damaging jojoba, Simmondsia chinensis (Link) Schneider, and their natural enemies, in the North Central and Central Regions of Chile. Crop Prot 10:469–472CrossRefGoogle Scholar
  264. Ravetta DA, Soriano A (1998) Alternatives for the development of new industrial crops for Patagonia. Ecologia Austral 8:297–307Google Scholar
  265. Ray DT, Coffelt TA, Dierig DA (2005) Breeding guayule for commercial production. Ind Crop Prod 22(1):15–25Google Scholar
  266. Reddy MP, Chikara J (2010) Biotechnology advances in jojoba (Simmondsia chinensis). In: Desert plants. Springer, Berlin Heidelberg, pp 407–421CrossRefGoogle Scholar
  267. Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85:997–997PubMedCrossRefGoogle Scholar
  268. Rodríguez Garcia R, Jasso de Rodríguez D, Angulo-Sánchez JL, Dierig DA, Diaz Solís H, De la Rosa-Loera A (2007) Lesquerella fendleri response to different sowing dates in northern Mexico. Ind Crop Prod 25:117–122Google Scholar
  269. Roetheli JC, Carlson KD, Kleiman R, Thompson AE, Dierig DA, Glaser LK, Blase MG, Goodell J (1991) Lesquerella as a source of hydroxy fatty acids for industrial products, Growing industrial materials series (unnumbered). USDA-CSRS Office of Agricultural Materials, Washington, DCGoogle Scholar
  270. Roll J, Mitchell RJ, Cabin RJ, Marshall DL (1997) Reproductive success increases with local density of conspecifics in a desert mustard (Lesquerella fendleri). Cons Biol 11:738–746CrossRefGoogle Scholar
  271. Rollins RC (1945) Interspecific hybridization in Parthenium I. Crosses between guayule (P. argentatum) and mariola (P. incanum). Amer J Bot 32:395–404CrossRefGoogle Scholar
  272. Rollins RC (1950) The guayule rubber plant and its relatives. Contributions from the Gray Herbarium of Harvard University, Cambridge, MAGoogle Scholar
  273. Rollins RC (1988) A population of interspecific hybrids of Lesquerella (Cruciferae). Syst Bot 13:60–63CrossRefGoogle Scholar
  274. Rollins RC (1993) The Cruciferae of Continental North America: systematics of the mustard family from the Arctic to Panama. Stanford University Press, pp 617–618Google Scholar
  275. Rollins RC, Shaw EA (1973) The genus Lesquerella (Cruciferae) in North America. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  276. Rollins RC, Solbrig OT (1973) Interspecific hybridization in Lesquerella. Contributions from the Gray Herbarium of Harvard University, no. 203. 3–48. https://archive.org/stream/mobot31753002286786#page/n47/mode/2up. Accessed 1 June 2017
  277. Roseberg RJ (1993) Cultural practices for Lesquerella production. J Am Oil Chem Soc 70:1241–1244CrossRefGoogle Scholar
  278. Runquist RDB (2012) Pollinator-mediated competition between two congeners, Limnanthes douglasii subsp. rosea and L. alba (Limnanthaceae). Am J Bot 99:1125–1132CrossRefGoogle Scholar
  279. Salgın U (2007) Extraction of jojoba seed oil using supercritical CO 2+ ethanol mixture in green and high-tech separation process. J Supercrit Fluids 39:330–337CrossRefGoogle Scholar
  280. Salgin U, Çalimli A, Zühtü Uysal B (2004) Supercritical fluid extraction of jojoba oil. J Am Oil Chem Soc 81:293–296CrossRefGoogle Scholar
  281. Salywon AM, Dierig DA, Rebman JP, Jasso de Rodriguez D (2005) Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm. Am J Bot 92:53–62PubMedCrossRefGoogle Scholar
  282. Sanchez PL, Costich DE, Friebe B, Coffelt TA, Jenks MA, Gore MA (2014) Genome size variation in guayule and mariola: Fundamental descriptors for polyploid plant taxa. Ind Crop Prod 54:1–5CrossRefGoogle Scholar
  283. Sanchez M, Avhad MR, Marchetti JM, Martinez M, Aracil J (2016) Jojoba oil. A state of the art review and future prospects. Energy Convers Manag 129:293–304CrossRefGoogle Scholar
  284. Saroj S, Kumar S (1983) Root rot disease of jojoba in Indian desert-A new record. Ind J Mycol Pl Path 13:108Google Scholar
  285. SBBG, Santa Barbara Botanical Garden (2017) https://www.sbbg.org/search/node/jojoba. Accessed 1 Sept 2017
  286. Scaven VL, Rafferty NL (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59:418–426PubMedPubMedCentralCrossRefGoogle Scholar
  287. Schloman WW Jr, Hively RA, Krishen A, Andrews AM (1983) Guayule byproduct evaluation: extract characterization. J Agric Food Chem 32:873–876CrossRefGoogle Scholar
  288. SDBG, San Diego Botanical Garden (2017) http://www.sdbgarden.org/garden_native.htm. Accessed 1 Sept 2017
  289. Shani A (1995) The struggles of jojoba. Chemtech 25(5):49–54 AbstractGoogle Scholar
  290. Sharma P, Champawat RS (2000) Seed mycoflora of jojoba (Simmondsia chinensis), their pathogenic potential and control. Indian. J Mycol Pl Path. AbstractGoogle Scholar
  291. Sharma K, Agrawal V, Gupta S, Kumar R, Prasad M (2008) ISSR marker-assisted selection of male and female plants in a promising dioecious crop: jojoba (Simmondsia chinensis). Plant Biotechnol Rep 2:239–243CrossRefGoogle Scholar
  292. Sharma R, Chowdhury VK, Jain S, Jain RK (2009) A comparative study of genetic relationships among and within male and female genotypes of dioecious Jojoba (Simmondsia chinensis L. Schneider) using RAPD and ISSR markers. Asian J Hort 4:184–193Google Scholar
  293. Sherbrooke WC, Haase EF (1974) Jojoba: a wax-producing shrub of the Sonoran Desert; literature review and annotated bibliography. Office of Arid Lands Studies, University of Arizona, Tucson. http://arizona.openrepository.com/arizona/bitstream/10150/238171/1/alrip_05.pdf. Accessed 3 July 2017
  294. Sidibé SS, Blin J, Vaitilingom G, Azoumah Y (2010) Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review. Renew Sust Ener Rev 14:2748–2759CrossRefGoogle Scholar
  295. Singh A, Reddy MP, Patolia JS (2008) An improved protocol for micropropagation of elite genotypes of Simmondsia chinensis (Link) Schneider. Biol Plant 52:538–542CrossRefGoogle Scholar
  296. Sivasankaran GA, Bisht RPS, Jain VK, Gupta M, Sethuramiah A, Bhatia VK (1988) Jojoba-oil-based two-stroke gasoline engine lubricant. Tribol Int 21:327–333CrossRefGoogle Scholar
  297. Skarzhinskaya M, Landgren M, Glimelius K (1996) Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet 93:1242–1250PubMedCrossRefGoogle Scholar
  298. Skarzhinskaya M, Fahleson J, Glimelius K, Mouras A (1998) Genome organization of Brassica napus and Lesquerella fendleri and analysis of their somatic hybrids using genomic in situ hybridization. Genome 41:691–701CrossRefGoogle Scholar
  299. Sloop CM, Ayres DR (2009) Conservation genetics of two endangered vernal pool plants of the Santa Rosa Plain, Sonoma County, California. In: Willoughby JW, Orr BK, Schierenbeck KA, Jensen NJ (eds) Stategies and solutions, proceedings of the California Native Plant Society conservation conference. CNPS Press, SacramentoGoogle Scholar
  300. Sloop CM, Pickens C, Gordon SP (2011) Conservation genetics of Butte County meadowfoam (Limnanthes floccosa ssp. californica Arroyo), an endangered vernal pool endemic. Cons Genet 12:311–323CrossRefGoogle Scholar
  301. Sloop CM, Eberl R, Ayres DR (2012) Genetic diversity and structure in the annual vernal pool endemic Limnanthes vinculans Ornduff (Limnanthaceae): implications of breeding system and restoration practices. Cons Genet 13:1365–1379CrossRefGoogle Scholar
  302. Small E (1995) Crop diversification in Canada with particular reference to genetic resources. Can J Plant Sci 75:33–43CrossRefGoogle Scholar
  303. Smith CR, Bagby MO, Miwa TK, Lohmar RL, Wolff IA (1960) Unique fatty acids from Limnanthes douglasii seed oil. J Org Chem 25:1770CrossRefGoogle Scholar
  304. Smith M, Moon H, Kunst L (1998) Arabidopsis as a model system to study hydroxy fatty acid production. In: Sánchez J, Cerdá-Olmedo E, Martínez-Force E (eds) Advances in plant lipid research. Universidad de Sevilla, Sevilla, pp 650–652Google Scholar
  305. Sparling Z (2015) Meadowfoam co-op weathers international firm’s presence. Capital Press, the West’s Ag Website, published 13 July 2015. http://www.capitalpress.com/Business/20150713/meadowfoam-co-op-weathers-international-firms-presence. Accessed 4 Mar 2017
  306. Stebbins GL, Major J (1965) Endemism and speciation in the California flora. Ecol Monogr 35:1–35CrossRefGoogle Scholar
  307. Stephens JM (1994) Jojoba – Simmondsia chinensis (Link) S. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences. http://www.growables.org/informationVeg/documents/Jojoba.pdf. Accessed 1 Sept 2017
  308. Stevens JF, Reed RL, Morre JT (2008) Characterization of phytoecdysteroid glycosides in meadowfoam (Limnanthes alba) seed meal by positive and negative ion LC-MS/MS. J Agic Food Chem 56:3945–3952CrossRefGoogle Scholar
  309. Sukkasi S, Chollacoop N, Ellis W, Grimley S, Jai-In S (2010) Challenges and considerations for planning toward sustainable biodiesel development in developing countries: lessons from the Greater Mekong Subregion. Renew Sust Ener Rev 14:3100–3107CrossRefGoogle Scholar
  310. Tal M, Rosental I, Abramovitz R, Forti M (1979) Salt tolerance in Simmondsia chinensis: water balance and accumulation of chloride, sodium and proline under low and high salinity. Ann Bot 43:701–708CrossRefGoogle Scholar
  311. Thompson AE, Dierig DA (1994) Initial selection and breeding of Lesquerella fendleri, a new industrial oilseed. Ind Crop Prod 2:97–106CrossRefGoogle Scholar
  312. Thompson AE, Ray DT (1988) Breeding guayule. In: Janick J (ed) Plant breeding reviews, vol 6. Wiley, New York, pp 93–165Google Scholar
  313. Throckmorton JC, Cheeke PR, Patton NM, Arscott GH, Jolliff GD (1981) Evaluation of meadowfoam (Limnanthes alba) meal as a feedstuff for broiler chicks and weanling rabbits. Can J Anim Sci 61:735–742CrossRefGoogle Scholar
  314. Tobares L, Frati M, Guzmán C, Maestri D (2004) Agronomical and chemical traits as descriptors for discrimination and selection of jojoba (Simmondsia chinensis) clones. Ind Crop Prod 19:107–111CrossRefGoogle Scholar
  315. Torres M, Lloret C, Sosa M, Maestri D (2006) Composition and oxidative stability of soybean oil in mixtures with jojoba oil. Eur J Lipid Sci Technol 108:513–520CrossRefGoogle Scholar
  316. Toy SJ, Willingham BC (1966) Effect of temperature on seed germination of ten species and varieties of Limnanthes. Econ Bot 20:71–77CrossRefGoogle Scholar
  317. TPW (2017) Federal and state listed plants of Texas. Texas Parks & Wildlife (TPW). http://tpwd.texas.gov/huntwild/wild/wildlife_diversity/nongame/listed-species/plants/. Accessed 3 June 2017
  318. Tyagi D, Granica L (2015) U.S. Patent No. 9,052,624. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  319. Tyagi RK, Prakash S (2004) Genotype- and sex-specific protocols for in vitro micropropagation and medium-term conservation of jojoba. Biol Plant 48:1019–1023Google Scholar
  320. Tysdal HM, Rands RD (1952) Breeding for disease resistance and higher rubber yield in Hevea, guayule, and Kok-Saghyz. Agron J 45:234–243CrossRefGoogle Scholar
  321. U.S. Department of the Interior (2017) Programmatic formal consultation on the U.S. Fish and Wildlife Service’s vernal pool conservation strategy for Jackson County, Oregon https://www.blm.gov/or/districts/medford/plans/table/files/Vernal_Pool_Biological_Opinion.pdf. Accessed 12 Mar 2017
  322. Ülger S, Akdeşir Ö, Baktir İ (2002) Selection of promising jojoba (Simmondsia chinensis Link Schneider) types in terms of yield and oil content. Turk J Agric For 26:319–322Google Scholar
  323. Undersander J, Oelke EA, Kaminski AR, Doll JD, Putnam DH, Combs SM, Hanson CV (1990) Jojoba. In: Alternative field crops manual. https://hort.purdue.edu/newcrop/afcm/jojoba.html. Accessed 24 Aug 2017
  324. USDA, ARS. National Plant Germplasm System (2017a) Germplasm Resources Information Network (GRIN Global) Taxonomy. National Germplasm Resources Laboratory, Beltsville. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomyquery.aspx. Accessed 8 Mar 2017
  325. USDA, ARS. National Plant Germplasm System (2017b) Germplasm Resources Information Network (GRIN Global) database. National Germplasm Resources Laboratory, Beltsville. http://www.ars-grin.gov/npgs/acc/acc_queries.html. Accessed 6 Feb 2017
  326. USDA, ARS (2016) National arid land plant genetic resources unit. Parlier, CA https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=37. Accessed 15 Dec 2016
  327. USDA Plants, Classification Limnanthes; Common Names (2016) https://plants.usda.gov/java/ClassificationServlet?source=display&classid=LIMNA. Accessed 14 Dec 2017
  328. USFW, U.S. Fish and Wildlife Service (2015a) Missouri bladderpod (Physaria filiformis) 5-year review: summary and evaluation. Missouri Ecological Services Field Office, ColumbiaGoogle Scholar
  329. USFW, U.S. Fish and Wildlife Service (2015b) Zapata Bladderpod Physaria thamnophila (Rollins & E.A. Shaw) O’Kane & Al-Shehbaz (Synonym: Lesquerella thamnophila Rollins & E.A. Shaw) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service. Texas Coastal Ecological Services Field Office, Corpus Christi. https://www.fws.gov/southwest/es/Documents/R2ES/ZapataBladderpod_5YrReview_Aug2015.pdf. Accessed 4 June 2017
  330. USFW, US Fish and Wildlife Service (2017) Species fact sheet large-flowered wooly meadowfoam. https://www.fws.gov/oregonfwo/Species/Data/LargeFloweredWoollyMeadowfoam/default.asp. Accessed 1 June 2017
  331. Van Boven M, Daenens P, Maes K, Cokelaere M (1997) Content and composition of free sterols and free fatty alcohols in jojoba oil. J Agric Food Chem 45:1180–1184CrossRefGoogle Scholar
  332. Van Dyne DL (1997) Comparative economics of producing lesquerella in various areas of the Southwestern United States. In: Industrial Uses of Agricultural Materials. USDA Economic Research Service IUS-7, pp 32–35Google Scholar
  333. Van Soest LJM (1993) New crop development in Europe. In: Janick J, Simon SE (eds) New crops. Wiley, New York, pp 30–38Google Scholar
  334. Van Tieghem BLR (1898) Sur le genre Simmondsie. Am Nat 32:529–530. https://doi.org/10.1086/276954CrossRefGoogle Scholar
  335. Vaughn SF, Boydston RA, Mallory-Smith CA (1996) Isolation and identification of (3-methoxyphenyl) acetonitrile as a phytotoxin from meadowfoam (Limnanthes alba) seedmeal. J Chem Ecol 22:1939–1949PubMedCrossRefGoogle Scholar
  336. Velasco P, Slabaugh MB, Reed R, Kling J, Kishore VK, Stevens JF, Knapp SJ (2011) Glucosinolates in the new oilseed crop meadowfoam: natural variation in Section Inflexae of Limnanthes, a new glucosinolate in L. floccosa, and QTL analysis in L. alba. Plant Breed 130:352–359CrossRefGoogle Scholar
  337. Verbiscar AJ, Banigan TF (1978) Composition of jojoba seeds and foliage. J Agric Food Chem 26:1456–1459CrossRefGoogle Scholar
  338. Wang GS, McCloskey W, Foster M, Dierig D (2010) Lesquerella: a winter oilseed crop for the Southwest. Arizona Cooperative Extension. The University of Arizona, TucsonGoogle Scholar
  339. Warne B, Sloop C (2009) Application of molecular techniques to examine the genetic structure of populations of Butte County Meadowfoam (Limnanthes floccosa ssp. californica). http://scholar.google.com/scholar?hl=en&q=Warne+B%2Blimnanthes+floccosa+2009&btnG=&as_sdt=1%2C6&as_sdtp. Accessed 16 Mar 2017
  340. Whaley D (2016) Meadowfoam pests. In: Pacific Northwest pest management handbooks. A Pacific Northwest Extension Publication, Oregon State University, Washington State University, University of Idaho, p. D23. https://pnwhandbooks.org/insect/legume-grass-field-seed/meadowfoam/meadowfoam-meadowfoam-fly. Accessed 18 Mar 2017
  341. Wilcox DR (1991) The Mesoamerican ballgame in the American Southwest. In: Scarborough VL, Wilcox DR (eds) The Mesoamerican ballgame. University of Arizona Press, Tucson, pp 101–128Google Scholar
  342. Wille SA, Petersen RR (2006) Vernal pool conservation in the Agate Desert, near Medford, Oregon. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 29:1993–1997Google Scholar
  343. Windauer LB, Slafer GA, Ravetta DA (2004) Phenological responses to temperature of annual and a perennial Lesquerella species. Ann Bot 94:139–144PubMedPubMedCentralCrossRefGoogle Scholar
  344. Wisniak J (1977) Jojoba oil and derivatives. Prog Chem Fats Other Lipids 15:167–218PubMedCrossRefGoogle Scholar
  345. Wisniak J (1994) Potential uses of jojoba oil and meal—a review. Ind Crop Prod 3:43–68CrossRefGoogle Scholar
  346. Wistrom C, Sisterson MS, Pryor MP, Hashim-Buckey JM, Daane KM (2010) Distribution of glassy-winged sharpshooter and threecornered alfalfa hopper on plant hosts in the San Joaquin Valley, California. J Econ Ent 103:1051–1059CrossRefGoogle Scholar
  347. WNHP (2015) Washington natural heritage program 2015 endangered, threatened, and sensitive vascular plant list. Washington State Department of Natural Resources (WNHP). http://file.dnr.wa.gov/publications/amp_nh_vascular_ets.pdf. Accessed 4 June 2017
  348. Wynn-Williams RB, Logan LA (1985) The course of research and development of alternative arable crops in New Zealand. Proceeding of the Agronomy Society of New Zealand 15:83–102 https://www.agronomysociety.org.nz/uploads/94803/files/1985_17._R_and_D_for_alternative_NZ_arable_crops.pdf. Accessed 4 Mar 2017
  349. Yermanos DM (1974) Agronomic survey of jojoba in California. Econ Bot 28:160–174CrossRefGoogle Scholar
  350. Yermanos DM (1977) Jojoba—genetically controlled botanical traits. J Am Oil Chem Soc 54:545–548CrossRefGoogle Scholar
  351. Yermanos DM (1978) Jojoba. I. Establishment of commercial plantations. J Am Oil Chem Soc 55:A888–A891CrossRefGoogle Scholar
  352. Yermanos DM (1979) Jojoba-a crop whose time has come. California Agriculture July–August: 4–11. https://ucanr.edu/repositoryfiles/ca3307p4-69932.pdf. Accessed 10 Aug 2017
  353. Yermanos DM, Duncan CC (1976) Quantitative and qualitative characteristics of jojoba seed. J Am Oil Chem Soc 53:80–82CrossRefGoogle Scholar
  354. Yermanos DM, Kadish A, McKell C, Goodin J (1968) Jojoba–a new California crop?… seed yield, cold tolerance, and evaluation for aluminum industry. Calif Agric 22:2–3Google Scholar
  355. Yoffe A (1980) Simmondsia wax production in Israel. I. Grafting of jojoba. Abstract. https://www.cabdirect.org/cabdirect/abstract/19802607016. Accessed 1 Sept 2017
  356. Zanetti F, Monti A, Berti MT (2013) Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind Crop Prod 50:580–595CrossRefGoogle Scholar
  357. Zasada IA, Weiland JE, Reed RL, Stevens JF (2012) Activity of meadowfoam (Limnanthes alba) seed meal glucolimnanthin degradation products against soilborne pathogens. J Agric Food Chem 60:339–345PubMedCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Maria M. Jenderek
    • 1
    Email author
  • Von Mark Cruz
    • 2
  • Andrew Salywon
    • 3
  • Diana Jasso de Rodriguez
    • 4
  • Raúl Rodríguez García
    • 4
  • José Ángel Villarreal Quintanilla
    • 4
  • David A. Dierig
    • 2
  1. 1.USDA, Agricultural Research Service, Center for Agricultural Resources ResearchNational Laboratory for Genetic Resources PreservationFort CollinsUSA
  2. 2.Bridgestone Americas, Inc.EloyUSA
  3. 3.Desert Botanical GardenPhoenixUSA
  4. 4.Universidad Autónoma Agraria Antonio NarroSaltilloMexico

Personalised recommendations