Advertisement

Carbon Dynamics at Harvard Forest: Ecological Responses to Changes in the Growing Season

  • Lauren Kathleen SanchezEmail author
Chapter

Abstract

Our understanding of forest carbon dynamics is a crucial component of global carbon management given the potential impacts from future climatic changes. Observed increases in carbon storage in New England forests are not fully understood, and explanations range from increased atmospheric nitrogen deposition to longer growing seasons. These explanations highlight the importance of investigating the phenological and ecosystem function responses to increases in the growing season. Responses were modeled and studied at Harvard Forest, a temperate deciduous forest located in Petersham, MA. Ongoing biometric and eddy flux measurements at the forest provided 17 years of data for this study. Measurements included biometry components, such as leaf area index (LAI) and aboveground woody biomass, and the eddy flux parameters, including carbon flux and measurements of PAR and vapor pressure deficit (VPD). Structural equation modeling (SEM) was used to analyze these data and investigate their whole ecosystem direct and indirect interactions. SEM allowed for analyses that addressed the complexity of forest ecosystems and their components. Growing season length was a significant driver of carbon uptake, and was heavily influenced by soil temperatures below the surface. Analyses of the eddy flux data resulted in a model that accurately portrayed the interactions between the eddy flux components and the growing season (GFI = 0.90). Further, the best-fit integrated model simulated an ecological 1-year time lag between the eddy flux and biometry data (GFI = 0.78). This study presents a basis for SEM analyses with the biometry and eddy flux measurements at Harvard Forest. Further research is needed to investigate the ecosystem function responses to changes in the growing season.

Keywords

Carbon dynamics Forest ecology Climate change modeling Eddy flux technique Growing season changes 

References

  1. Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., & Moore, K. (2001). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1692.CrossRefGoogle Scholar
  2. Barnes, B. V., Zak, D. R., Denton, S. R., & Spurr, S. H. (1998). Forest ecology. New York: Wiley.Google Scholar
  3. Bedison, J. E., & McNeil, B. E. (2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology, 90, 1736–1742.CrossRefGoogle Scholar
  4. Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity- evidence since the middle of the 20th century. Global Change Biology, 12, 862–882.CrossRefGoogle Scholar
  5. Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. Environmental Pollution, 116, 363–372.CrossRefGoogle Scholar
  6. Casperson, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., & Birdsey, R. A. (2000). Contributions of land-use history to carbon accumulation in U.S. forests. Science, 290, 1148–1152.CrossRefGoogle Scholar
  7. Cha, D. H., Appel, H. M., Frost, C. J., Schultz, J. C., & Steiner, K. C. (2010). Red oak responses to nitrogen addition depend on herbivory type, tree family, and site. Forest Ecology and Management, 259, 1930–1937.CrossRefGoogle Scholar
  8. Curtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J. C., Schmid, H. P., & Wilson, K. B. (2002). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology, 113, 3–19.CrossRefGoogle Scholar
  9. Dewar, R. C. (1990). A model of carbon storage in forests and forest products. Tree Physiology, 6, 417–428.CrossRefGoogle Scholar
  10. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–193.CrossRefGoogle Scholar
  11. Foster, D. R., Donahue, B. M., Kittredge, D. B., Lambert, K. F., Hunter, M. L., Hall, B. R., Irland, L. C., Lilieholm, R. J., Orwig, D. A., D’Amato, A. W., Colburn, E. A., Thompson, J. R., Levitt, J. N., Ellison, A. M., Keeton, W. S., Aber, J. D., Cogbill, C. V., Driscoll, C. T., Fahey, T. J., & Hart, C. M. (2010). Wildlands and Woodlands: A vision for the New England landscape. Cambridge, MA: Harvard Forest, Harvard University Press.Google Scholar
  12. Fox, J. (2006). Structural equation modeling with the SEM package in R. Structural Equation Modeling, 13, 465–486.CrossRefGoogle Scholar
  13. Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks; making REDD a reality. Environmental Research Letters, 2, 1–13.Google Scholar
  14. Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., & Wofsy, S. C. (1996a). Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science, 271, 1576–1578 In text: Goulden, 1996a.CrossRefGoogle Scholar
  15. Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., & Wofsy, S. C. (1996b). Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biology, 2, 169–182 In text: Goulden, 1996b.CrossRefGoogle Scholar
  16. Grace, J. B. (2006). Structural equation modeling and natural systems. New York: Cambridge University Press.CrossRefGoogle Scholar
  17. Guest, R. (2010). The economics of sustainability in the context of climate change: An overview. Journal of World Business, 45, 326–335.CrossRefGoogle Scholar
  18. Harmon, M. E., & Sexton, J. (1996). Guidelines for measurements of woody detritus in forest ecosystems. U.S. LTER Network Office, 20, 1–73.Google Scholar
  19. Harmon, M. E., Ferrell, W. K., & Franklin, J. F. (1990). Effects on carbon storage of conversion of old-growth forests to young forests. Science, 247, 699–702.CrossRefGoogle Scholar
  20. Heath, L. S., Smith, J. E., Woodall, C. W., Azuma, D. L., & Waddell, K. L. (2011). Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership. Ecosphere, 2, 1–21.CrossRefGoogle Scholar
  21. Hopkins, R. (2009). Peak oil and climate change. In: The transition handbook: From oil dependency to local resilience. White River Junction: Chelsea Green Publishing.Google Scholar
  22. Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., & McManus, J. B. (2006). Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agricultural and Forest Meteorology, 136, 159–174.CrossRefGoogle Scholar
  23. Houghton, R. A. (1995). Land-use change and the carbon cycle. Global Change Biology, 1, 275–287.CrossRefGoogle Scholar
  24. Irland, L. C. (2008). Ice storm 1998 and the forests of the Northeast. Pathology, 1, 32–39.Google Scholar
  25. Kulmatiski, A., Vogt, D. J., Siccama, T. G., Tilley, J. P., Kolesinskas, K., Wickwire, T. W., & Larson, B. C. (2004). Landscape determinants of soil carbon and nitrogen storage in Southern New England. Soil Science Society of America Journal, 68, 2014–2023.CrossRefGoogle Scholar
  26. Liu, W. H., Bryant, D. M., Hutyra, L. R., Saleska, S. R., Hammond-Pyle, E., Curran, D., & Wofsy, S. C. (2006). Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. Ecosystem Ecology, 148, 108–117.Google Scholar
  27. Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., Melillo, J. M., & Steudler, P. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7–28.CrossRefGoogle Scholar
  28. Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.CrossRefGoogle Scholar
  29. Ollinger, S. V., Aber, J. D., & Federer, C. A. (1998). Estimating regional forest productivity and water yield using an ecosystem model linked to a GIS. Landscape Ecology, 13, 323–334.CrossRefGoogle Scholar
  30. Olthof, I., King, D. J., & Lautenschlager, R. A. (2003). Overstory and understory leaf area index as indicators of forest response to ice storm damage. Ecological Indicators, 3, 49–64.CrossRefGoogle Scholar
  31. Orwig, D. A., Foster, D. R., & Mausel, D. L. (2002). Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. Journal of Biogeography, 29, 1475–1487.CrossRefGoogle Scholar
  32. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. The Annual Review of Ecology, Evolution, and Systematics, 37, 637–639.CrossRefGoogle Scholar
  33. Perry, D. A. (1994). Forest ecosystems. Baltimore: John Hopkins University press.Google Scholar
  34. Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052–2077.CrossRefGoogle Scholar
  35. Richardson, A. D. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society, 365, 3227–3246.CrossRefGoogle Scholar
  36. Saxe, H., Ellsworth, D. S., & Heath, J. (1998). Tansley Review No. 98: Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395–426.CrossRefGoogle Scholar
  37. Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.CrossRefGoogle Scholar
  38. Schimel, D., Melillo, J., Tian, H., McGuire, A. D., Kicklighter, D., Kittel, T., Ojima, D., Parton, W., Kelly, R., Skyes, M., Neilson, R., & Rizzo, B. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004.CrossRefGoogle Scholar
  39. Seymour, R., & Hunter, M. (1999). Principles of ecological forestry. In: Managing biodiversity in forested ecosystems. New York: Cambridge University Press.Google Scholar
  40. Toledo, M., Poorter, L., Pena-Claros, M., Alarcon, A., Balcazar, J., Leano, C., Licona, J. C., Llanque, O., Vroomans, V., Zuidema, P., & Bongers, F. (2010). Climate is a stronger driver of tree and forest growth rates than soil. Journal of Ecology, 10, 1–11.Google Scholar
  41. Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., & Munger, J. W. (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research, 112, 1–25.CrossRefGoogle Scholar
  42. Vincent, M. A., & Saatchi, S. S. (1999). Comparison of remote sensing techniques for measuring carbon sequestration. Jet Propulsion Laboratory, California Institute of Technology, 1, 36.Google Scholar
  43. White, M. A., Running, S. W., & Thornton, P. E. (1999). The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139–145.CrossRefGoogle Scholar
  44. Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., & Bazzaz, F. A. (1993). Net exchange of CO2 in a mid-latitude forest. Science, 260, 1314–1318.CrossRefGoogle Scholar
  45. Zheng, D., Heath, L. S., & Ducey, M. J. (2008). Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA. Journal of Applied Remote Sensing, 2, 1–18.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Yale University School of Forestry and Environmental StudiesNew HavenUSA

Personalised recommendations