Advertisement

Basic Science of Vaginal Mesh

  • Katrina Knight
  • Pamela Moalli
  • Rui Liang
Chapter

Abstract

The use of mesh to treat gynecologic disorders of pelvic organ prolapse and stress urinary incontinence is widespread. While mesh has provided many women relief of their symptoms and relatively good anatomical outcomes, surgeries employing mesh have had significant complications, resulting in the release of public health notifications, the up-classification of these devices, the discontinuation of mesh products by vendors, and multi-district litigation. To date the precise etiology of mesh complications is unknown; however, basic science research investigating the pathogenesis of mesh complications has increased over the past 10–15 years, and potential mechanisms have been identified. The purpose of this chapter is to provide an overview of the ex vivo and in vivo studies that have shed light on our understanding of the factors that contribute to mesh complications. Specifically, the impact of mesh textiles properties and mechanics on the host response will be explored. Additionally, this chapter will summarize the pertinent in vivo animal and human studies that have investigated the host response to polypropylene-based mesh. Although biological meshes have also been used in the treatment of gynecologic disorders, polypropylene urogynecologic meshes will be the main focus of this text. Lastly, the chapter will conclude with a future perspective of basic science research on urogynecologic meshes.

Keywords

Polypropylene mesh Pelvic organ prolapse Stress urinary incontinence Mesh mechanics Host response Textile properties Structural properties Vaginal mesh 

References

  1. 1.
    Funk MJ, Edenfield AL, Pate V, Visco AG, Weidner AC, Wu JM. Trends in use of surgical mesh for pelvic organ prolapse. Am J Obstet Gynecol. 2013;208(1):79.e1–e7.CrossRefGoogle Scholar
  2. 2.
    Moalli PA, Talarico LC, Sung VW, Klingensmith WL, Shand SH, Meyn LA, Watkins SC. Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol. 2004;90(3):620–7.CrossRefGoogle Scholar
  3. 3.
    Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005;106(5 I):953–63.CrossRefGoogle Scholar
  4. 4.
    Boreham MK, Wai CY, Miller RT, Schaffer JI, Word RA. Morphometric analysis of smooth muscle in the anterior vaginal wall of women with pelvic organ prolapse. Am J Obstet Gynecol. 2002;187(1):56–63.CrossRefGoogle Scholar
  5. 5.
    Boreham MK, Wai CY, Miller RT, Schaffer JI, Word RA, Weber AA. Morphometric properties of the posterior vaginal wall in women with pelvic organ prolapse. Am J Obstet Gynecol. 2002;187(6):1501–9.CrossRefGoogle Scholar
  6. 6.
    Zong W, Stein SE, Starcher B, Meyn LA, Moalli PA. Alteration of vaginal elastin metabolism in women with pelvic organ prolapse. Obstet Gynecol. 2010;115(5):953–61.CrossRefGoogle Scholar
  7. 7.
    DeLancey JO. Anatomy and biomechanics of genital prolapse. Clin Obstet Gynecol. 1993;36(4):897–909.CrossRefGoogle Scholar
  8. 8.
    DeLancey JO. The anatomy of the pelvic floor. Curr Opin Obstet Gynecol. 1994;6(4):313–6.CrossRefGoogle Scholar
  9. 9.
    Norton PA. Pelvic floor disorders: the role of fascia and ligaments. Clin Obstet Gynecol. 1993;36(4):926–38.CrossRefGoogle Scholar
  10. 10.
    Wei JT, De Lancey JO. Functional anatomy of the pelvic floor and lower urinary tract. Clin Obstet Gynecol. 2004;47(1):3–17.CrossRefGoogle Scholar
  11. 11.
    Barber MD, Brubaker L, Burgio KL, Richter HE, Nygaard I, Weidner AC, et al. Comparison of 2 transvaginal surgical approaches and perioperative behavioral therapy for apical vaginal prolapse: the OPTIMAL randomized trial. JAMA. 2014;311(10):1023–34.CrossRefGoogle Scholar
  12. 12.
    Pierce LM, Rao A, Baumann SS, Glassberg JE, Kuehl TJ, Muir TW. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol. 2009;200(5):546.e1–e8.CrossRefGoogle Scholar
  13. 13.
    Feola A, Endo M, Urbankova I, Vlacil J, Deprest T, Bettin S, et al. Host reaction to vaginally inserted collagen containing polypropylene implants in sheep. Am J Obstet Gynecol. 2015;212(4):474.e1–474.e8.CrossRefGoogle Scholar
  14. 14.
    Manodoro S, Endo M, Uvin P, Albersen M, Vláčil J, Engels A, et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG. 2013;120(2):244–50.CrossRefGoogle Scholar
  15. 15.
    Engelsman AF, Van Dam GM, Van Der Mei HC, Busscher HJ, Ploeg RJ. In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg. 2010;251(1):133–7.CrossRefGoogle Scholar
  16. 16.
    Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res. 2002;63(6):765–71.CrossRefGoogle Scholar
  17. 17.
    Iglesia CB, Fenner DE, Brubaker L. The use of mesh in gynecologic surgery. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8(2):105–15.CrossRefGoogle Scholar
  18. 18.
    Cosson M, Debodinance P, Boukerrou M, Chauvet MP, Lobry P, Crépin G, Ego A. Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material? Int Urogynecol J Pelvic Floor Dysfunct. 2003;14(3):169–78.CrossRefGoogle Scholar
  19. 19.
    Chen CC, Ridgeway B, Paraiso MF. Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin Obstet Gynecol. 2007;50(2):383–411.CrossRefGoogle Scholar
  20. 20.
    Wohlrab KJ, Erekson EA, Myers DL. Postoperative erosions of the Mersilene® suburethral sling mesh for antiincontinence surgery. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(4):417–20.CrossRefGoogle Scholar
  21. 21.
    Cobb WS, Peindl RM, Zerey M, Carbonell AM, Heniford BT. Mesh terminology 101. Hernia. 2009;13(1):1–6.CrossRefGoogle Scholar
  22. 22.
    Patel H, Ostergard DR, Sternschuss G. Polypropylene mesh and the host response. Int Urogynecol J Pelvic Floor Dysfunct. 2012;23(6):669–79.CrossRefGoogle Scholar
  23. 23.
    Conze J, Rosch R, Klinge U, Weiss C, Anurov M, Titkowa S, et al. Polypropylene in the intra-abdominal position: influence of pore size and surface area. Hernia. 2004;8(4):365–72.CrossRefGoogle Scholar
  24. 24.
    Greca FH, De Paula JB, Biondo-Simões MLP, Da Costa FD, Da Silva APG, Time S, Mansur A. The influence of differing pore sizes on the biocompatibility of two polypropylene meshes in the repair of abdominal defects: experimental study in dogs. Hernia. 2001;5(2):59–64.CrossRefGoogle Scholar
  25. 25.
    Greca FH, Souza-Filho ZA, Giovanini A, Rubin MR, Kuenzer RF, Reese FB, Araujo LM. The influence of porosity on the integration histology of two polypropylene meshes for the treatment of abdominal wall defects in dogs. Hernia. 2008;12(1):45–9.CrossRefGoogle Scholar
  26. 26.
    Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res. 2002;103(2):208–14.CrossRefGoogle Scholar
  27. 27.
    Orenstein SB, Saberski ER, Kreutzer DL, Novitsky YW. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J Surg Res. 2012;176(2):423–9.CrossRefGoogle Scholar
  28. 28.
    Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;1(1):15–21.CrossRefGoogle Scholar
  29. 29.
    Otto J, Kaldenhoff E, Kirschner-Hermanns R, Mühl T, Klinge U. Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. J Biomed Mater Res A. 2014;102(4):1079–84.CrossRefGoogle Scholar
  30. 30.
    Junge K, Binnebösel M, Von Trotha KT, Rosch R, Klinge U, Neumann UP, Jansen PL. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbeck’s Arch Surg. 2012;397(2):255–70.CrossRefGoogle Scholar
  31. 31.
    Mühl T, Binnebösel M, Klinge U, Goedderz T. New objective measurement to characterize the porosity of textile implants. J Biomed Mater Res B Appl Biomater. 2008;84((1):176–83.CrossRefGoogle Scholar
  32. 32.
    Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13(1):7–12.CrossRefGoogle Scholar
  33. 33.
    Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Ann Rev Pathol. 2013;8:241–76.CrossRefGoogle Scholar
  34. 34.
    Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37.CrossRefGoogle Scholar
  35. 35.
    Rudolph R, Utley JR, Woodward M. Contractile fibroblasts (myofibroblasts) in a painful pacemaker pocket. Ann Thorac Surg. 1981;31(4):373–6.CrossRefGoogle Scholar
  36. 36.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.CrossRefGoogle Scholar
  37. 37.
    Klinge U, Klosterhalfen B, Öttinger AP, Junge K, Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23(16):3487–93.CrossRefGoogle Scholar
  38. 38.
    Klinge U, Klosterhalfen B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia. 2012;16(3):251–8.CrossRefGoogle Scholar
  39. 39.
    Klinge U, Junge K, Stumpf M, Öttinger AP, Klosterhalfen B. Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res. 2002;63(2):129–36.CrossRefGoogle Scholar
  40. 40.
    Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG. 2013;120(2):233–43.CrossRefGoogle Scholar
  41. 41.
    Novitsky YW, Cristiano JA, Harrell AG, Newcomb W, Norton JH, Kercher KW, Heniford BT. Immunohistochemical analysis of host reaction to heavyweight-, reduced-weight-, and expanded polytetrafluoroethylene (ePTFE)-based meshes after short- and long-term intraabdominal implantations. Surg Endosc. 2008;22(4):1070–6.CrossRefGoogle Scholar
  42. 42.
    Costello CR, Bachman SL, Grant SA, Cleveland DS, Loy TS, Ramshaw BJ. Characterization of heavyweight and lightweight polypropylene prosthetic mesh explants from a single patient. Surg Innov. 2007;14(3):168–76.CrossRefGoogle Scholar
  43. 43.
    Brown BN, Mani D, Nolfi AL, Liang R, Abramowitch SD, Moalli PA. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque. Am J Obstet Gynecol. 2015;213(5):668.e1–668e.10.CrossRefGoogle Scholar
  44. 44.
    Nolfi AL, Brown BN, Liang R, Palcsey SL, Bonidie MJ, Abramowitch SD, Moalli PA. Host response to synthetic mesh in women with mesh complications. Am J Obstet Gynecol. 2016;215(2):206.e1–206.e8.CrossRefGoogle Scholar
  45. 45.
    Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Öttinger AP, Schumpelick V. Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg. 1998;64(12):951–60.CrossRefGoogle Scholar
  46. 46.
    Klinge U, Klosterhalfen B, Muller M, Ottinger AP, Schumpelick V. Shrinking of polypropylene mesh in vivo: an experimental study in dogs. Eur J Surg. 1998;164(12):965–9.CrossRefGoogle Scholar
  47. 47.
    O’Dwyer PJ, Kingsnorth AN, Molloy RG, Small PK, Lammers B, Horeyseck G. Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair. Br J Surg. 2005;92(2):166–70.CrossRefGoogle Scholar
  48. 48.
    Rosch R, Junge K, Schachtrupp A, Klinge U, Klosterhalfen B, Schumpelick V. Mesh implants in hernia repair: inflammatory cell response in a rat model. Eur Surg Res. 2003;35(3):161–6.CrossRefGoogle Scholar
  49. 49.
    Weyhe D, Schmitz I, Belyaev O, Grabs R, Muller KM, Uhl W, Zumtobel V. Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg. 2006;30(8):1586–91.CrossRefGoogle Scholar
  50. 50.
    Shepherd JP, Feola AJ, Abramowitch SD, Moalli PA. Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2012;23(5):613–20.CrossRefGoogle Scholar
  51. 51.
    Feola A, Barone W, Moalli P, Abramowitch S. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. Int Urogynecol J Pelvic Floor Dysfunct. 2013;24(4):559–64.CrossRefGoogle Scholar
  52. 52.
    Knight K, Moalli PA. Mechanics of pelvic floor prosthetic devices. In: Hoyte L, Damaser M, editors. Biomechanics of the female pelvic floor. 2nd ed. London: Academic Press/Elsevier; 2016. p. 149–78.CrossRefGoogle Scholar
  53. 53.
    Jones KA, Feola A, Meyn L, Abramowitch SD, Moalli PA. Tensile properties of commonly used prolapse meshes. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(7):847–53.CrossRefGoogle Scholar
  54. 54.
    Moalli PA, Papas N, Menefee S, Albo M, Meyn L, Abramowitch SD. Tensile properties of five commonly used mid-urethral slings relative to the TVT™. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(5):655–63.CrossRefGoogle Scholar
  55. 55.
    Afonso JS, Martins PA, Girao MJ, Natal Jorge RM, Ferreira AJM, Mascarenhas T, et al. Mechanical properties of polypropylene mesh used in pelvic floor repair. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(3):375–80.CrossRefGoogle Scholar
  56. 56.
    Dietz HP, Vancaillie P, Svehla M, Walsh W, Steensma AB, Vancaillie TG. Mechanical properties of urogynecologic implant materials. Int Urogynecol J Pelvic Floor Dysfunct. 2003;14(4):239–43.CrossRefGoogle Scholar
  57. 57.
    Feola A, Pal S, Moalli P, Maiti S, Abramowitch S. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes. J Biomech. 2014;47(11):2584–9.CrossRefGoogle Scholar
  58. 58.
    Saberski ER, Orenstein SB, Novitsky YW. Anisotropic evaluation of synthetic surgical meshes. Hernia. 2011;15(1):47–52.CrossRefGoogle Scholar
  59. 59.
    Goel VK, Lim TH, Gwon J, Chen JY, Winterbottom JM, Park JB, et al. Effects of rigidity of an internal fixation device. A comprehensive biomechanical investigation. Spine. 1991;16(3 Suppl):S155–61.CrossRefGoogle Scholar
  60. 60.
    Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20(11–12):1135–50.CrossRefGoogle Scholar
  61. 61.
    Rumian AP, Draper ER, Wallace AL, Goodship AE. The influence of the mechanical environment on remodelling of the patellar tendon. J Bone Joint Surg Br. 2009;91(4):557–64.CrossRefGoogle Scholar
  62. 62.
    Yamamoto N, Ohno K, Hayashi K, Kuriyama H, Yasuda K, Kaneda K. Effects of stress shielding on the mechanical properties of rabbit patellar tendon. J Biomech Eng. 1993;115(1):23–8.CrossRefGoogle Scholar
  63. 63.
    Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, Moalli P. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG. 2013;120(2):224–32.CrossRefGoogle Scholar
  64. 64.
    Jallah Z, Liang R, Feola A, Barone W, Palcsey S, Abramowitch S, et al. The impact of prolapse mesh on vaginal smooth muscle structure and function. BJOG. 2016;123(7):1076–85.CrossRefGoogle Scholar
  65. 65.
    Liang R, Zong W, Palcsey S, Abramowitch S, Moalli PA. Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque. Am J Obstet Gynecol. 2015;212(2):174.e1–174.e7.CrossRefGoogle Scholar
  66. 66.
    Barone WR, Moalli PA, Abramowitch SD. Textile properties of synthetic prolapse mesh in response to uniaxial loading. Am J Obstet Gynecol. 2016;215(3):326.e1–326.e9.CrossRefGoogle Scholar
  67. 67.
    Barone WR, Amini R, Maiti S, Moalli PA, Abramowitch SD. The impact of boundary conditions on surface curvature of polypropylene mesh in response to uniaxial loading. J Biomech. 2015;48(9):1566–74.CrossRefGoogle Scholar
  68. 68.
    Barone WR. Mechanical characterization of synthetic mesh for pelvic organ prolapse repair [dissertation]. Pittsburgh: University of Pittsburgh; 2015. http://d-scholarship.pitt.edu/25620/. Accessed 8 Sept 2017.
  69. 69.
    Caquant F, Collinet P, Debodinance P, Berrocal J, Garbin O, Rosenthal C, et al. Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J Obstet Gynaecol Res. 2008;34(4):449–56.CrossRefGoogle Scholar
  70. 70.
    Feiner B, Maher C. Vaginal mesh contraction: definition, clinical presentation, and management. Obstet Gynecol. 2010;115(2 Part 1):325–30.CrossRefGoogle Scholar
  71. 71.
    Rogowski A, Bienkowski P, Tosiak A, Jerzak M, Mierzejewski P, Baranowski W. Mesh retraction correlates with vaginal pain and overactive bladder symptoms after anterior vaginal mesh repair. Int Urogynecol J Pelvic Floor Dysfunct. 2013;24(12):2087–92.CrossRefGoogle Scholar
  72. 72.
    Svabik K, Martan A, Masata J, El-Haddad R, Hubka P, Pavlikova M. Ultrasound appearances after mesh implantation—evidence of mesh contraction or folding? Int Urogynecol J. 2011;22(5):529–33.CrossRefGoogle Scholar
  73. 73.
    Clavé A, Yahi H, Hammou J-C, Montanari S, Gounon P, Clavé H. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J. 2010;21(3):261–70.CrossRefGoogle Scholar
  74. 74.
    Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8(3):978–87.CrossRefGoogle Scholar
  75. 75.
    Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.CrossRefGoogle Scholar
  76. 76.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.CrossRefGoogle Scholar
  77. 77.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.CrossRefGoogle Scholar
  78. 78.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.CrossRefGoogle Scholar
  79. 79.
    Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 2013;9(2):4948–55.CrossRefGoogle Scholar
  80. 80.
    Gundra UM, Girgis NM, Ruckerl D, Jenkins S, Ward LN, Kurtz ZD, et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood. 2014;123(20):e110–22.CrossRefGoogle Scholar
  81. 81.
    Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.CrossRefGoogle Scholar
  82. 82.
    Dias FG, Prudente A, Siniscalchi RT, de Vidal BC, Riccetto CL. Can highly purified collagen coating modulate polypropylene mesh immune-inflammatory and fibroblastic reactions? Immunohistochemical analysis in a rat model. Int Urogynecol J Pelvic Floor Dysfunct. 2015;26(4):569–76.CrossRefGoogle Scholar
  83. 83.
    Huffaker RK, Muir TW, Rao A, Baumann SS, Kuehl TJ, Pierce LM. Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit agina model. Am J Obstet Gynecol. 2008;198(5):582.e1–582.e7.CrossRefGoogle Scholar
  84. 84.
    Pierce LM, Asarias JR, Nguyen PT, Mings JR, Gehrich AP. Inflammatory cytokine and matrix metalloproteinase expression induced by collagen-coated and uncoated polypropylene meshes in a rat model. Am J Obstet Gynecol. 2011;205(1):82.e1–82.e9.CrossRefGoogle Scholar
  85. 85.
    Tayrac R, Alves A, Thérin M. Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J. 2007;18(5):513–20.CrossRefGoogle Scholar
  86. 86.
    Siniscalchi RT, Melo M, Palma PC, Fabbro IM, De Campos Vidal B, Riccetto CL. Highly purified collagen coating enhances tissue adherence and integration properties of monofilament polypropylene meshes. Int l Urogynecol J. 2013;24(10):1747–54.CrossRefGoogle Scholar
  87. 87.
    Prudente A, Favaro WJ, Reis LO, Riccetto CL. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis. Int Int Urol Nephrol. 2017;49(4):597–605.CrossRefGoogle Scholar
  88. 88.
    Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35(30):8585–95.CrossRefGoogle Scholar
  89. 89.
    Wolf MT, Carruthers CA, Dearth CL, Crapo PM, Huber A, Burnsed OA, et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. J Biomed Mater Res A. 2014;102(1):234–46.CrossRefGoogle Scholar
  90. 90.
    Wolf MT, Dearth CL, Ranallo CA, LoPresti ST, Carey LE, Daly KA, et al. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. 2014;35(25):6838–49.CrossRefGoogle Scholar
  91. 91.
    Liang R, Knight K, Barone W, Powers RW, Nolfi A, Palcsey S, et al. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque. Am J Obstet Gynecol. 2017;216(2):153.e1–153.e9.CrossRefGoogle Scholar
  92. 92.
    Liang R, Knight K, Easley D, Palcsey S, Abramowitch S, Moalli PA. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold. Acta Biomater. 2017;57:324–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medicine, School of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital of UPMC, Magee-Womens Research Institute, University of PittsburghPittsburghUSA
  3. 3.Department of Obstetrics, Gynecology and Reproductive Sciences, University of PittsburghPittsburghUSA

Personalised recommendations