Urban Trees and Their Relationship with Air Pollution by Particulate Matter and Ozone in Santiago, Chile

  • Margarita PréndezEmail author
  • Mauricio Araya
  • Carla Criollo
  • Claudia Egas
  • Iván Farías
  • Raúl Fuentealba
  • Edgardo González


Most Latin American cities have air quality problems owing to high levels of particulate matter and ozone. By 2050, it is expected that more than 80% of Latin Americans will live in urban areas, leading to an increment in pollution problems. Santiago, Chile shows a high level of pollution from PM10 and PM2.5, especially during the autumn–winter period and from ozone (O3) during the spring–summer period owing to natural and anthropogenic causes. Information for this chapter was obtained from the official monitoring system of pollutants, but also from scientific papers and experimental work developed in our laboratory. The chapter contains a general description of the particulate matter, some analytical methods of studying it, and their officially reported sources; also, some new findings are included. For tropospheric ozone, a similar procedure was followed. The result is essentially focused on considering the ability of urban trees in capturing PM, while at the same time emitting minimal amounts of biogenic volatile organic compounds (BVOCs) that can potentially generate ozone. Available information shows that native species and a few exotic species were the most frequently appropriated to accomplish both requirements. As the vegetation of Santiago is mainly composed of exotic tree species that lose their leaves during the winter and produce high quantities of BVOCs during spring–summer, it does not contribute to the improvement of air quality; on the contrary. This situation should be remedied as soon as possible through the correct choice of trees and urban planning measures. The chapter also includes some similar variables reported in the literature from other countries of Latin America.


Air quality PM10 and PM2.5 Ozone Chemical analysis Urban vegetation 



Projects REDES-Conicyt 140176 and 170074, and the undergraduate student of Chemistry Nathaly Godoy.


  1. Aguilar-Reyes, B., Cejudo Ruiz, R., Martínez-Cruz, J., Bautista, F., Goguitchaichvili, A., Carvallo, C., & Morales, J. (2012). Ficus benjamina leaves as indicator of atmospheric pollution: A reconaissance study. Studia Geophysica et Geodaetica, 56(3), 879–887. Scholar
  2. Aguilar-Reyes, B., Mejía, V., Goguitchaichvili, A., Escobar, J., Bayona, G., Bautista, F., Morales, J., & Ihl, T. (2013). Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Studia Geophysica et Geodaetica, 57(4), 741–754. Scholar
  3. Albertine, J. M., Manning, W. J., Da Costa, M., Stinson, K. A., Muilenberg, M. L., & Rogers, C. A. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One, 9(11), e111712.Google Scholar
  4. Almeida, S. M., Freitas, M. C., Reis, M., Pinheiro, T., Felix, P. M., & Pio, C. A. (2013). Fifteen years of nuclear techniques application to suspended particulate matter studies. Journal of Radioanalytical and Nuclear Chemistry, 297(3), 347–356.Google Scholar
  5. Altimir, N., Tuovinen, J. P., Vesala, T., Kulmala, M., & Hari, P. (2004). Measurements of ozone removal by Scots pine shoots: Calibration of a stomatal uptake model including the non-stomatal component. Atmospheric Environment, 38(15), 2387–2398.Google Scholar
  6. Alvarado, A., Baldini, A., & Guajardo, F. (Eds.). (2013). Programa de arborización: Un chileno, un árbol: Árboles urbanos de Chile. Gobierno de Chile: Guía de Reconocimiento.Google Scholar
  7. Arneth, A., Monson, R. K., Schurgers, G., Niinemets, U., & Palmer, P. I. (2008). Why are estimates of global terrestrial isoprene emissions so similar (and why in this not so for monoterpenes). Atmospheric Chemistry and Physics, 8(16), 4605–4620.Google Scholar
  8. Artaxo, P., Oyola, P., & Martínez, R. (1999). Aerosol composition and source apportionment in Santiago de Chile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150(1), 409–416.Google Scholar
  9. Astudillo, P., Mancilla, P., Olmos, C., & Reyes, Á. (2012). Epidemiology of pediatric respiratory consultations in Santiago de Chile, from 1993 to 2009. Revista Panamericana de Salud Pública, 32, 56–61.Google Scholar
  10. Atkinson, R. (1990). Gas-phase tropospheric chemistry of organic compounds: A review. Atmospheric Environment Part A. General Topics, 24(1), 1–41.Google Scholar
  11. Avolio, M. L., Pataki, D. E., Pincetl, S., Gillespie, T. W., Jenerette, G. D., & McCarthy, H. R. (2015). Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosystems, 18(1), 73–86.Google Scholar
  12. Badiu, D. L., Ioja, C. I., Patroescua, M., Breuste, J., Artmann, M., Nita, M. R., Gradinarua, S. R., Hossu, C. A., & Onose, D. A. (2016). Is urban green space per capita a valuable target to achieve cities’sustainability goals? Romania as a case study. Ecological Indicators, 70, 53–66.Google Scholar
  13. Barrios, S., Peña-Cortés, F., & Osses, S. (2004). Efectos de la contaminación atmosférica por material particulado en las enfermedades respiratorias agudas en menores de 5 años. Ciencia y enfermería, 10(2), 21–29.Google Scholar
  14. Bell, M., McDermott, A., Zeger, S., Samet, J., & Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA, 292(19), 2372–2378.Google Scholar
  15. Bon, D., Ulbrich, I., Gouw, J., Warneke, C., Kuster, W., Alexander, M., Baker, A., Beyersdorf, A., Blake, D., Fall, R., Jiménez, J., Herndon, S., Huey, L., Knighton, O., Springston, J., & Vargas, O. (2011). Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physic, 11, 2399–2421.Google Scholar
  16. Bowman, F. M., & Seinfeld, J. H. (1994). Ozone productivity of atmospheric organics. Journal of Geophysical Research, 99(D3), 5309–5324.Google Scholar
  17. Burnett, R., Smith-Doiron, M., Stieb, D., Raizenne, M., Brook, J., Dales, R., Leech, J., Cakmak, S., & Krewski, D. (2001). Association between ozone and hospitalization for acute respiratory diseases in children less than 2 years of age. American Journal of Epidemiology, 153(5), 444–452.Google Scholar
  18. Cakmak, S., Dales, R. E., & Vidal, C. B. (2007). Air pollution and mortality in Chile: Susceptibility among the elderly. Environmental Health Perspectives, 115, 524–527.Google Scholar
  19. Calfapietra, C., Mugnozza, G. S., Karnosky, D. F., Loreto, F., & Sharkey, T. D. (2008). Isoprene emission rates under elevated CO2 and O3 en two field-grown aspen clones differing in their sensitivity to O3. New Phytologist, 179(1), 55–61.Google Scholar
  20. Calfapietra, C., Fares, S., & Loreto, F. (2009). Volatile organic compounds from Italian vegetation and their interaction with ozone. Environmental Pollution, 157(5), 1478–1486.Google Scholar
  21. Calzolai, G., Lucarelli, F., Chiari, M., Nava, S., Giannoni, M., Carraresi, L., & Vecchi, R. (2015). Improvements in PIXE analysis of hourly particulate matter samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 363, 99–104.Google Scholar
  22. Castañeda-Miranda, A. G., Chaparro, M. A., Chaparro, M. A., & Böhnel, H. N. (2016). Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, 60, 125–136.Google Scholar
  23. CEPAL/OCDE. (2016). Evaluaciones del desempeño ambiental: Chile 2016. Santiago. Retrieved 20 January 2017, from
  24. Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martínez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., & Wang, T. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research: Atmospheres, 97(D5), 6037–6055.Google Scholar
  25. Chen, T. Y., & Jang, M. (2012). Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene. Atmospheric Environment, 46, 271–278.Google Scholar
  26. Cheung, K., Daher, N., Kam, W., Shafer, M., Ning, Z., Schauer, J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651–2662.Google Scholar
  27. CONAMA. (1997). Inventario de Emisiones Atmosféricas de la Región Metropolitana para 1997 y Proyecciones al 2005. Chile: Centro Nacional del Medio Ambiente, CENMA.Google Scholar
  28. Corchnoy, S. B., Arey, J., & Atkinson, R. (1992). Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 339–348.Google Scholar
  29. Costanza, R., Fisher, B., Mulder, K., Liu, S., & Christopher, T. (2007). Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics, 61(2), 478–491.Google Scholar
  30. Criollo, C., Assar, R., Cáceres, D., & Préndez, M. (2016). Urban trees, air quality and respiratory diseases in six communes of the province of Santiago, Chile. Revista chilena de enfermedades respiratorias, 32(2), 77–86.Google Scholar
  31. D N° 198. (2006). Decree 198/06 Regulation of Law 1356 of Buenos Aires, Agency of Environmental Protection Argentina. Quarterly report on air quality, Matanza-Riachuelo basin, period December 2010 – January – February 2011. Retrieved 2 January 2017, from
  32. D N° 59113. (2013). State Decree No. 59113 of 04/23/2013, Establishes new air quality standards and provides related measures. Retrieved 2 January 2017, from
  33. Das, S., & Prasad, P. (2010). Seasonal variation in air pollution tolerance indices and selection of plant species for industrial areas of Rourkela. International Journal of Environmental Protection, 30, 978–988.Google Scholar
  34. Sienra, M., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75(4), 267–281.Google Scholar
  35. Derwent, R. G., Jenkin, M. E., Passant, N. R., & Pilling, M. J. (2007). Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a master chemical mechanism. Atmospheric Environment, 41(12), 2570–2579.Google Scholar
  36. Díaz-Robles, L. A., Fu, J. S., Vergara-Fernández, A., Etcharren, P., Schiappacasse, L. N., Reed, G. D., & Silva, M. P. (2014). Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: A case study of Temuco, Chile. Environment International, 66, 174–181.Google Scholar
  37. Dineva, S. B. (2006). Development of the leaf blades of Acer platanoides in industrially contaminated environment. Dendrobiology, 55, 25–32.Google Scholar
  38. Donoso, C. (Ed.). (2005). Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Valdivia: Marisa Cúneo Ediciones.Google Scholar
  39. DS 112/02. (2002). DS 112/02 Decreto Supremo. Ministerio Secretaría General de la Presidencia de la República (MSGPR). Chile. Norma de Calidad Primaria de Aire para Ozono. Retrieved 19 January 2017, from
  40. DS 12. (2011). Primary environmental air quality standard for respirable fine particulate matter PM2.5 [On-line]. Retrieved from (in Spanish).
  41. DS 59. (1998). Primary air quality standard for PM10. Retrieved from
  42. DS 74-2001-PCM. (2001). Reglamento de Estándares Nacionales de Calidad Ambiental del Aire. Ministerio del Ambiente, Perú. Retrieved 19 January 2017, from
  43. EC Ozone Directive. (2016). The current ozone directive and other relevant legislation, 2016. Retrieved from Accessed 19 January 2017.
  44. Egas, C. (2017). Características biológicas del arbolado urbano para contribuir con criterios de selección de especies arbóreas (Tesis de Magíster en Gestión y Planificación Ambiental). Programa Interfacultades, Universidad de Chile.Google Scholar
  45. Escobedo, F., Nowak, D. J., Wagner, J. E., De la Maza, C. L., Rodríguez, M., Crane, D. E., & Hernández, J. (2006). The socioeconomics and management of Santiago de Chile’s public urban forests. Urban Forestry & Urban Greening, 4(3), 105–114.Google Scholar
  46. Escobedo, F. J., Wagner, J., Nowak, D. J., De la Maza, C. L., Rodríguez, M., & Crane, D. (2008). Analyzing the cost-effectiveness of Santiago, Chile’s policy of using urban forests to improve air quality. Journal of Environmental Management, 86, 148–157.Google Scholar
  47. Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159(8), 2078–2087.Google Scholar
  48. EU. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Retrieved 19 January 2017, from
  49. European Economic Commission. (1991). Protocol to the 1979 convention on long-range transboundary air pollution concerning the control of emissions of volatile organic compounds or their transboundary fluxes. Article 1. Definitions: point 9. Retrieved in October 2017, from
  50. Evans, R. C., Tingey, D. T., Gumpertz, M. L., & Burns, W. F. (1982). Estimates of isoprene and monoterpene emission rates in plants. Botanical Gazette, 143(3), 304–310.Google Scholar
  51. Figueroa, J. A., Teillier, S., Guerrero-Leiva, N., Ray-Bobadilla, C., Rivano, S., Saavedra, D., & Castro, S. (2016). Vascular flora in public spaces of Santiago, Chile. Flora vascular en el espacio público de Santiago, Chile. Gayana Botanica, 73(1), 85.Google Scholar
  52. Finlayson-Pitts, B., & Pitts, J. N. (1997). Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276(5315), 1045–1051.Google Scholar
  53. Franck, U., Leitte, A. M., & Suppan, P. (2015). Multifactorial airborne exposures and respiratory hospital admissions-the example of Santiago de Chile. Science of the Total Environment, 502, 114–121.Google Scholar
  54. Fuentealba, R. (2015). Estudio diurno y nocturno del material particulado MP2,5 y MP10 en la Comuna de Independencia, Santiago, Chile (Memoria para optar al Título de Químico). Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile.Google Scholar
  55. Fuentealba, R. (2017). Estudio de métodos no destructivos nucleares y atómicos de análisis multielemental. Aplicación al material particulado resuspendido en comunas de la Ciudad de Santiago, Chile. (Diplomado en Tecnología Nuclear). Universidad Tecnológica Metropolitana.Google Scholar
  56. Gastelum, S. L., Mejía-Velázquez, G. M., & Lozano-García, D. F. (2016). Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico. Environmental Monitoring and Assessment, 188(6), 1–16.Google Scholar
  57. Gazley, M. F., & Fisher, L. A. (2014). A review of the reliability and validity of portable X-ray fluorescence spectrometry (pXRF) data. In Mineral resource and ore reserve estimation–The AusIMM guide to good practice (pp. 69–82).Google Scholar
  58. Geron, C., Guenther, A., Greenberg, J., Loescher, H. W., Clark, D., & Baker, B. (2002). Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmospheric Environment, 36, 3793–3802.Google Scholar
  59. Gostin, I. N. (2009). Air pollution effects on the leaf structure of some Fabaceae species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 57.Google Scholar
  60. Gramsch, E., Caceres, D., Oyola, P., Reyes, F., Vásquez, Y., Rubio, M. A., & Sánchez, G. (2014). Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmospheric Environment, 98, 290–298.Google Scholar
  61. Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere, 85(2), 195–202.Google Scholar
  62. Guenther, A., Zimmerman, P., & Harley, P. (1993). Isoprene and monoterpene variability: Model evaluations and sensitivity analysis. Journal of Geophysical Research, 98, 609–617.Google Scholar
  63. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., & Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100, 8873–8892.Google Scholar
  64. Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. Scholar
  65. Guerrero-Leiva, N., Castro, S. A., Rubio, M. A., & Ortiz-Calderón, C. (2016). Retention of atmospheric particulate by three Woody ornamental species in Santiago, Chile. Water, Air, and Soil Pollution, 227, 435. Scholar
  66. Gutiérrez, P. (2005). 84 árboles para las ciudades de Chile. Escuela de Ingeniería Forestal. Santiago: Ediciones Universidad Mayor.Google Scholar
  67. Heath, R. L., & Taylor, G. E. (1997). Physiological processes and plant responses to ozone exposure. In H. Sandermann (Ed.), Forest decline and ozone: A comparison of controlled chamber and field experiments, Ecological studies (Vol. 127, pp. 317–368). Heidelberg: Springer.Google Scholar
  68. Hebbert, M., & Webb, B. (2012). Towards a liveable urban climate – Lessons from Stuttgart. In C. Gossop (Ed.), Liveable cities: Urbanising world (ISOCARP 07) (pp. 132–150). London/New York: Routledge.Google Scholar
  69. Hernández, H. J. (2016). Estructura y composición del arbolado de Santiago: actualización al 2014. Informe de Proyecto Fondecyt 1140319: Vegetation Knowledge-based Indicators for Urban Sustainable Planning. Retrieved from:
  70. Hitzenberger, R., Berner, A., Galambos, Z., Maenhaut, W., Cafmeyer, J., Schwarz, J., Müller, K., Spindler, G., Wieprecht, W., Acker, K., Hillamo, R., & Mäkelä, T. (2004). Intercomparison of methods to measure the mass concentration of the atmospheric aerosol during INTERCOMP2000 – Influences of instrumentation and size cuts. Atmospheric Environment, 38, 6467–6476.Google Scholar
  71. Hoffmann, A. (1998a). El Árbol Urbano en Chile. Santiago: Ediciones Fundación Claudio Gay.Google Scholar
  72. Hoffmann, A. (1998b). Flora Silvestre de Chile, Zona Central. Santiago: Ediciones Fundación Claudio Gay.Google Scholar
  73. IDEAM. (2016). Informe del Estado de la Calidad del Aire en Colombia 2011–2015, 2016. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Retrieved 23 January 2017, from
  74. International Federation of Parks and Recreation Administration (IFPRA). (2010). World Congress, Hong Kong, City Hall, Aldous DE Greening South East Asian Capital Cities. In Paper of the 22nd 15–18 November 2010.Google Scholar
  75. Kabisch, N., Strohbach, M. & Haase, D. (2015). Internal project report on inventory of urban green space demand for the two scale levels, ULLS and European urban atlas cities (Milestone report MS 24).Google Scholar
  76. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.Google Scholar
  77. Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33(1), 23–88.Google Scholar
  78. Khalil, R. (2014). Quantitative evaluation of distribution and accessibility of urban green spaces (Case study: City of Jeddah). International Journal of Geomatics and Geosciences, 4(3), 526–535.Google Scholar
  79. Kim, H., Barkey, B., & Paulson, S. E. (2012). Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and alpha-pinene: The effect of the HC/NOx ratio. The Journal of Physical Chemistry A, 116(24), 6059–6067.Google Scholar
  80. Kim, H., Liu, S., Russell, L. M., & Paulson, S. E. (2014). Dependence of real refractive indices on O:C, H:C and mass fragments of secondary organic aerosol generated from ozonolysis and photooxidation of limonene and alpha-pinene. Aerosol Science and Technology, 48(5), 498–507.Google Scholar
  81. Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.Google Scholar
  82. Koeser, A. K., Gilman, E. F., Paz, M., & Harchick, C. (2014). Factors influencing urban tree planting program growth and survival in Florida, United States. Urban Forestry & Urban Greening, 13, 655–661.Google Scholar
  83. Leiva, M., Santibañez, D., Ibarra, S., Matus, P., & Seguel, R. (2013). A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution, 181, 1–6.Google Scholar
  84. Liu, L., Yu, L. Y., Mu, H. J., Xing, L. Y., Li, Y. X., & Pan, G. W. (2014). Shape of concentration-response curves between long-term particulate matter exposure and morbidities of chronic bronchitis: A review of epidemiological evidence. Journal of Thoracic Disease, 6(7), S720.Google Scholar
  85. Lukjanova, A., & Mandre, M. (2010). Effects of alkalization of the environment on the anatomy of scots pine (Pinus sylvestris) needles. Water, Air, and Soil Pollution, 206, 13–22.Google Scholar
  86. Machler, F., Wasescha, M. R., Krieg, F., & Oertli, J. J. (1995). Damage by ozone and protection by ascorbic acid in barley leaves. Journal of Plant Physiology, 147, 469–473.Google Scholar
  87. Maenhaut, W., Raes, N., & Wang, W. (2011). Analysis of atmospheric aerosols by particle-induced X-ray emission, instrumental neutron activation analysis, and ion chromatography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(22), 2693–2698.Google Scholar
  88. Marié, D. C., Chaparro, M. A., Irurzun, M. A., Lavornia, J. M., Marinelli, C., Cepeda, R., Böhnel, H., Castañeda, A. G., & Sinito, A. M. (2016). Magnetic mapping of air pollution in Tandil city (Argentina) using the lichen Parmotrema pilosum as biomonitor. Atmospheric Pollution Research, 7(3), 513–520.Google Scholar
  89. Matus, P., & Lucero, R. (2002). Norma Primaria de Calidad del Aire. Revista Chilena de Enfermedades Respiratorias, 18(2), 112–122.Google Scholar
  90. Mauderly, J. L., & Samet, J. M. (2009). Is there evidence for synergy among air pollutants in causing health effects? Environmental Health Perspectives, 117(1), 1–6.Google Scholar
  91. McConnell, R., Berhane, K., Gilliland, F., London, S., Islam, T., Gauderman, J., Avol, E., Margolis, H., & Peters, J. (2002). Asthma in exercising children exposed to ozone: A cohort study. The Lancet, 359, 386–391.Google Scholar
  92. Mesquita, P. R., Nunes, E. C., dos Santos, F. N., Bastos, L. P., Costa, M. A., Rodrígues, F., & de Andrade, J. (2017). Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchemical Journal, 130, 79–87.Google Scholar
  93. Millward, A. A., & Sabir, S. (2011). Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landscape and Urban Planning, 100, 177–188.Google Scholar
  94. MMA. (2013). First annual report on the environment status. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved from
  95. MMA. (2014). Planes de Descontaminación Atmosférica Estrategia 2014–2018. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved 20 January 2017, from
  96. MMA. (2016). Informe Final para la Gestión de Episodios Críticos de Contaminación Atmosférica por Material Particulado Respirable (MP10), Periodo 2016. Secretaria Regional Ministerial (SEREMI) del Medio Ambiente, Región Metropolitana. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved from
  97. MMAYA. (2015). Informe Nacional de Calidad del Aire de Bolivia 2014–2015. Ministerio de Medio Ambiente y Agua (MMAYA). Estado Plurinacional de Bolivia. Retrieved 23 January 2017, from
  98. Morani, A., Nowak, D. J., Hirabayashi, S., & Calfapietra, C. (2011). How to select the best tree planting locations to enhance air pollution removal in the million trees NYC initiative. Environmental Pollution, 159(5), 1040–1047.Google Scholar
  99. Morar, T., Radoslav, R., Spiridon, L., & Păcurar, L. (2014). Assessing pedestrian accessibility to green space using GIS Transylvanian. Review of Administrative Sciences, 42, 116–139.Google Scholar
  100. Muñoz, D., Aguilar, B., Fuentealba, R., & Préndez, M. (2017). Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees. Atmospheric Environment, 152, 617–627.Google Scholar
  101. Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker (Ed.), Climate change 2013: The physical science base, contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change (pp. 659–740). Cambridge/New York: Cambridge University Press.Google Scholar
  102. NA-AI-001. (2003). Ministry of the Environment, Dominican Republic. In Environmental standards for air quality and emission control. Retrieved from
  103. NCAA. (2011). Norma Ecuatoriana de Calidad de Aire Ambiental. Ministerio del Medio Ambiente. Gobierno Nacional de la República del Ecuador. Retrieved 23 January 2017, from
  104. Nilo, C. (2003). Plan Verde: Un instrumento para la gestión y el fomento de áreas verdes en el Gran Santiago. Urbano, 6(8), 10–15.Google Scholar
  105. NOM-020-SSA1. (2014). Norma Oficial Mexicana, Salud ambiental. Valores límite permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. Retrieved October 30, 2018, from
  106. Ortiz, J., Apablaza, N., Campos, C., Zolezzi, S., & Préndez, M. (1993). Tropospheric aerosols above the thermal inversion layer of Santiago, Chile: Size distribution of elemental concentration. Atmospheric Environment. Part A. General Topics, 27(3), 397–399.Google Scholar
  107. Ostro, B., Sánchez, J. M., Aranda, C., & Eskeland, G. S. (1996). Air pollution and mortality: Results from Santiago, Chile. Journal of Exposure Analysis and Environmental Epidemiology, 6, 97–114.Google Scholar
  108. Oyarzún, M. (2010). Contaminación aérea y sus efectos en la salud. Revista Chilena de Enfermedades Respiratorias, 26(1), 16–25.Google Scholar
  109. Pafi, M., Siragusa, A., Ferri, S., & Halkia, M. (2016). A comparison of the green ESM with other datasets in four European cities. Measuring the accessibility of urban green areas. Technical report, joint research centre, European Commission. JRC science hub. Retrieved 31 March 2017, from
  110. Paoletti, E. (2009). Ozone and urban forests in Italy. Environmental Pollution, 157, 1506–1512.Google Scholar
  111. Peñuelas, J., & Lluisà, J. (2002). Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytologist, 155, 227–237.Google Scholar
  112. Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144.Google Scholar
  113. Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237–243.Google Scholar
  114. Pope, C., Renlund, D., Kfoury, A., May, H., & Horne, B. (2008). Relation of heart failure hospitalization to exposure to fine particulate air pollution. The American Journal of Cardiology, 102(9), 1230–1234.Google Scholar
  115. Prajapati, S. K., & Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37(3), 865–870.Google Scholar
  116. Préndez, M. (1993). Características de los Contaminantes Atmosféricos. In H. Sandoval (Ed.), Contaminación Atmosférica de Santiago: Estado Actual y Soluciones. Santiago: Universidad de Chile y Comisión Especial de Descontaminación de la Región Metropolitana.Google Scholar
  117. Préndez, M., Ortiz, J. L., Cortés, E., & Cassorla, V. (1984). Elemental composition of airborne particulate matter from Santiago City, Chile, 1976. Journal of the Air Pollution Control Association, 34(1), 54–56.Google Scholar
  118. Préndez, M., Ortiz, J., Zolezzi, S., Campos, C., & Apablaza, N. (1991). Aerosoles atmosféricos de naturaleza inorgánica. Contaminación en Santiago de Chile. Revista Chilena de Enfermedades Respiratorias, 7(4), 224–237.Google Scholar
  119. Préndez, M., Egido, M., Tomas, M., Seco, J., Calvo, A. R., & Romero, H. (1995). Correlation between solar radiation and total suspended particulate matter in Santiago, Chile. Atmospheric Environment, 29, 1543–1551.Google Scholar
  120. Préndez, M., Punta, A., Sepúlveda, J., & Medina, P. (2007, September 5–7). Vehículos diesel livianos y medianos de tecnologías nuevas como fuente de material particulado (Paper presented at the V Congreso Interamericano de la Calidad del Aire, Santiago).Google Scholar
  121. Préndez, M., Alvarado, G., & Serey, I. (2011). Some guidelines to improve air quality management in Santiago, Chile: From commune to basin level. In N. Mazzeo (Ed.), Air quality monitoring, assessment and management (pp. 305–328). Rijeka: Intech.Google Scholar
  122. Préndez, M., Carvajal, V., Corada, K., Morales, J., Alarcón, F., & Peralta, H. (2013a). Biogenic volatile organic compounds from the urban forest of the metropolitan region, Chile. Environmental Pollution, 183, 143–150.Google Scholar
  123. Préndez, M., Corada, K., & Morales, J. (2013b). Emission factors of biogenic volatile organic compounds in various stages of growth present in the urban forest of the metropolitan region, Chile. Research Journal of Chemistry and Environment, 17(11), 108–116.Google Scholar
  124. Préndez, M., Corada, K., & Morales, J. (2014). Natural organic compounds from the urban forest of the metropolitan region, Chile: Impact on air quality. In K. Chetehouna (Ed.), Volatile organic compounds (pp. 103–142). New York: Nova Sciences Publishers Inc..Google Scholar
  125. Raynor, P., Leith, D., Lee, K., & Mukund, R. (2011). Sampling and analysis using filters. In P. Kulkarni (Ed.), Aerosol Measurements. Principles Techniques and Applications (pp. 107–128). Hoboken: Wiley.Google Scholar
  126. Reyes-Päcke, S., & Figueroa-Aldunce, I. M. (2010). Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile. EURE (Santiago), 36(109), 89–110.Google Scholar
  127. Richter, P., Griño, P., Ahumada, I., & Giordano, A. (2007). Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmospheric Environment, 41(32), 6729–6738.Google Scholar
  128. Riedemann, P., & Aldunate, G. (2004). Flora nativa de valor ornamental, identificación y propagación, Chile, Zona centro. Santiago: Editorial Andrés Bello.Google Scholar
  129. Rinne, H. J., Guenther, A., Greenberg, J., & Harley, P. C. (2002). Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature. Atmospheric Environment, 36, 2421–2426.Google Scholar
  130. Román, O., Prieto, M., Mancilla, P., Astudillo, P., Dussaubat, A., Miguel, C., & Lara, J. (2009). Daño cardiovascular por material particulado del aire. Puesta al día 2008. Revista Médica de Chile, 137(9), 1217–1224.Google Scholar
  131. Romieu, I., Gouveia, N., Cifuentes, L. A., de León, A. P., Junger, W., Vera, J., Strappa, V., Hurtado-Díaz, M., Miranda-Soberanis, V., Rojas-Bracho, L., Carbajal-Arroyo, L., Tzintzun-Cervantes, G., & HEI Health Review Committee. (2012). Multicity study of air pollution and mortality in Latin America (the ESCALA study). Research Report (Health Effects Institute), 171, 5–86.Google Scholar
  132. Rouillon, M., & Taylor, M. P. (2016). Canfield portable X-ray fluorescence (pXRF) produces high quality data for application in environmental contamination research? Environmental Pollution, 214, 255–264.Google Scholar
  133. Rubio, M. A., Zamorano, N., Lissi, E., Rojas, A., Gutierrez, L., & von Baer, D. (2006). Volatile carbonylic compounds in downtown Santiago, Chile. Chemosphere, 62, 1011–1020.Google Scholar
  134. Saadabi, A. M. (2011). Effects of auto-exhaust pollution on the micro-morphology and leaf epidermal features of ornamental plants in Khartoum, Sudan. Journal of Applied Sciences Research, 7, 270–273.Google Scholar
  135. Samet, J. M., Gruskin, S., & Grp, F. I. (2015). Air pollution, health, and human rights. The Lancet Respiratory Medicine, 3, 98–100.Google Scholar
  136. Sánchez-Duque, A., Bautista, F., Goguitchaichvili, A., Cejudo-Ruiz, R., Reyes-López, J. A., Solís-Domínguez, F. A., & Morales-Contreras, J. J. (2015). Evaluación de la contaminación ambiental a partir del aumento magnético en polvos urbanos-Caso de estudio para la ciudad de Mexicali, México. Revista Mexicana de Ciencias Geológicas, 32(3), 501–513.Google Scholar
  137. Seguel, R., Morales, R., & Leiva, M. (2009). Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmospheric Environment, 43, 2125–2131.Google Scholar
  138. Seguel, R. J., Morales, R. G., & Leiva, M. A. (2012). Ozone weekend effect in Santiago, Chile. Environmental Pollution, 162, 72–79.Google Scholar
  139. Sigman, R., Hilderink, H., Delrue, N., Braathen, N. A. & Leflaive, X. (2012). Health and environment. In OECD (Ed.), OECD environmental outlook to 2050: The consequences of inaction. Paris: OECD Publishing. Retrieved from
  140. SINCA. (2016). Sistema de Información Nacional de Calidad del Aire (SINCA). Ministerio del Medio Ambiente (MMA). Gobierno de Chile. Retrieved 29 December 2016, from
  141. SINCA. (2017). Sistema Nacional de Calidad del Aire (SINCA). Ministerio del Medio Ambiente (MMA). Gobierno de Chile. Retrieved 20 January 2017, from
  142. Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–794. Scholar
  143. Soja, G., & Soja, A. M. (1995). Ozone effects on dry matter partitioning and chlorophyll fluorescence during plant development of wheat. Water, Air and Soil Pollution, 85, 1461–1466.Google Scholar
  144. Solomon, P., & Sioutas, C. (2008). Continuous and semi-continuous monitoring techniques for particulate matter mass and chemical components: A synthesis of findings from EPA’s particulate matter supersites program and related studies. Journal of the Air & Waste Management Association, 58, 164–195.Google Scholar
  145. Speer, J. H. (2010). Fundamentals of tree-ring research. Tucson: University of Arizona Press.Google Scholar
  146. Srimuruganandam, B., & Nagendra, S. S. (2012). Source characterization of PM 10 and PM 2.5 mass using a chemical mass balance model at urban roadside. Science of the Total Environment, 433, 8–19.Google Scholar
  147. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900.Google Scholar
  148. Thaiutsa, B., Puangchit, L., Kjelgren, R., & Arunpraparut, W. (2008). Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban Forestry & Urban Greening, 7, 219–229.Google Scholar
  149. Tiwary, A., Sinnett, D., Peachey, C., Chalabi, Z., Vardoulakis, S., Fletcher, T., Leonardi, G., Grundy, C., Azapagic, A., & Hutchings, T. R. (2009). An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London. Environmental Pollution, 157, 2645–2653.Google Scholar
  150. Toro, R., Flocchini, R., Morales, R. G., & Leiva, M. A. (2014). Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile. The Scientific World Journal, 2014(794590), 12.Google Scholar
  151. UN. (2016). Reporte de las Ciudades del Mundo, Conferencia ONU Hábitat III.Google Scholar
  152. UNA. (2016). Universidad Nacional (UNA). In Informe de Calidad del Aire del Área Metropolitana de Costa Rica: Años 2013–2015, 2016. Retrieved from
  153. USACH. (2014). Actualización y sistematización del inventario de emisiones de contaminantes atmosféricos en la Región Metropolitana Santiago de Chile (pp. 34–40). Santiago.Google Scholar
  154. USEPA. (1998). Environmental technology verification report, field portable X-ray fluorescence analyzer. Metorex X-MET 920-P. United States Environmental Protection Agency (USEPA). Retrieved 28 January 2017, from,
  155. USEPA. (2008). Draft EPA SW-848 Method 6200. Field portable X-ray fluorescence spectrometry for the determination of elemental concentration in soil and sediment’, EPA office of solid waste. United States Environmental Protection Agency (USEPA).Google Scholar
  156. USEPA. (2009). Integrated science assessment for particulate matter (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009.Google Scholar
  157. USEPA. (2015) National ambient air quality standards for ozone; Final rule. Retrieved 19 January 2017, from
  158. Valdés, A., Zanobetti, A., Halonen, J. I., Cifuentes, L., Morata, D., & Schwartz, J. (2012). Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: A time series study. Environmental Health, 11(1), 82.Google Scholar
  159. Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512, 133–142.Google Scholar
  160. Wang, L., Aleme, H., Passador, M., Furtado, E., Alves, F., Poppia, R., & Augusto, F. (2013a). Determination of disease biomarkers in eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis. Journal of Chromatography A, 1279, 86–91.Google Scholar
  161. Wang, L., Toledo, B., Alves, F., Pizetta, M., Geraldi, C., Furtado, E., & Augusto, F. (2013b). Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta, 116, 1079–1084.Google Scholar
  162. Weindorf, D. C., Bakr, N., & Zhu, Y. (2014). Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Advances in Agronomy, 128, 1–45.Google Scholar
  163. WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications, European Series 91, Copenhagen.Google Scholar
  164. WHO. (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Bonn.Google Scholar
  165. WHO. (2005). World Health Organization air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. Geneva: World Health Organization.Google Scholar
  166. WHO. (2014). Ambient (Outdoor) air pollution in cities database 2014
  167. Winer, A. M., Fitz, D. R., & Miller, P. R. (1983). Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Contract No. AO-056-32, prepared for the California Air Resources Board, by the Statewide Air Pollution Research Center. Los Angeles: Riverside.Google Scholar
  168. WMO/IGAC. (2012). The impacts of megacities on air quality and climate change: An IGAC perspective. WMO/IGAC.Google Scholar
  169. World Bank. (1994). Chile-managing environmental problems: Economic analysis of selected issues, Report No.13061-CH. P 115. Washington, DC: The World Bank.Google Scholar
  170. Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3, 65–78.Google Scholar
  171. Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment, 42, 7266–7273.Google Scholar
  172. Zereini, F., & Wiseman, C. L. (2010). Urban airborne particulate matter: Origin, chemistry, fate, and health impacts. Heidelberg: Springer.Google Scholar
  173. Zimmerman, P. R. (1979). Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa/St Petersburg, Florida Area. EPA Contract 904/9-77-0282.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Margarita Préndez
    • 1
    Email author
  • Mauricio Araya
    • 2
  • Carla Criollo
    • 1
  • Claudia Egas
    • 1
  • Iván Farías
    • 1
  • Raúl Fuentealba
    • 1
  • Edgardo González
    • 1
  1. 1.Facultad de Ciencias Químicas y Farmacéuticas Laboratorio de Química de la Atmósfera y RadioquímicaUniversidad de ChileSantiagoChile
  2. 2.Departamento de Salud AmbientalInstituto de Salud Pública de ChileSantiagoChile

Personalised recommendations