Advertisement

Development and Finite Element Implementation of a Simple Constitutive Model to Address Superelasticity and Hysteresis of Nitinol

  • Siddhartha Patra
  • Sarmita Sinha
  • Abhijit Chanda
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

Nitinol shows superelasticity and clearly defined hysteresis that possesses close resemblance to biological components. This is attributed to stress-induced phase transformation of Nitinol. The present article proposes a new constitutive model based on a simple schematic arrangement of friction block, spring, and rigid walls to replicate this unique behavior of Nitinol. In addition to superelasticity, the strain hardening and viscoplasticity are thoroughly explored and also incorporated in the model. Results of simulation closely match with the experimental data obtained from uniaxial testing of Nitinol wire. This model can be readily used for any case of superelasticity either due to phase transformation or any other microstructural behavior.

Keywords

Nitinol Superelasticity Viscoplasticity Material nonlinearity Finite element analysis 

References

  1. 1.
    Bellouard, Y.: Shape memory alloys for microsystems: a review from a material research perspective. Mater. Sci. Eng. A 481–482, 582–589 (2008)CrossRefGoogle Scholar
  2. 2.
    Mahtabi, M., Shamsaei, N., Mitchell, M.: Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 50, 228–254 (2015)CrossRefGoogle Scholar
  3. 3.
    Plotino, G., Grande, N.M., Cordaro, M., Testarelli, L., Gambarini, G.: A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 35, 1469–1476 (2009)CrossRefGoogle Scholar
  4. 4.
    Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)CrossRefGoogle Scholar
  5. 5.
    Nayan, N., Buravalla, V., Ramamurty, U.: Effect of mechanical cycling on the stress–strain response of a martensitic Nitinol shape memory alloy. Mater. Sci. Eng. A 525, 60–67 (2009)CrossRefGoogle Scholar
  6. 6.
    Adharapurapu, R.R., Jiang, F., Bingert, F.J., Vecchio, S.K.: Influence of cold work and texture on the high-strain-rate response of Nitinol. Mater. Sci. Eng. A 527, 5255–5267 (2010)CrossRefGoogle Scholar
  7. 7.
    Sadiq, H., Wong, B.M., Al-Mahaidi, R., Zhao, L.X.: The effects of heat treatment on the recovery stresses of shape memory alloys. Smart Mater. Struct. 19, 1–7 (2010)CrossRefGoogle Scholar
  8. 8.
    Schlun, M., Zipse, A., Dreher, G., Rebelo, N.: Effects of cyclic loading on the uniaxial behavior of Nitinol. J. Mater. Eng. Perform. 20, 684–687 (2011)CrossRefGoogle Scholar
  9. 9.
    Halani, R.P., Kaya, I., Shin, C.Y., Karaca, E.H.: Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A 559, 836–843 (2013)CrossRefGoogle Scholar
  10. 10.
    Pelton, A., Dicello, J., Miyazaki, S.: Optimisation of processing and properties of medical grade Nitinol wire. Minim. Invasive Ther. Allied Technol. 9, 107–118 (2000)CrossRefGoogle Scholar
  11. 11.
    Mckelvey, A., Ritchie, R.: Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall. Mater. Trans. A 32a, 731–743 (2001)CrossRefGoogle Scholar
  12. 12.
    McNaneyM, J., Imbeni, V., Jung, Y., Papadopoulos, P., Ritchie, R.O.: An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech. Mater. 35, 969–986 (2003)CrossRefGoogle Scholar
  13. 13.
    Shishkovsky, I.: Hysteresis modeling of the porous Nitinol delivery system, designed and fabricated by SLS method. Phys. Procedia 39, 893–902 (2012)CrossRefGoogle Scholar
  14. 14.
    Duerig, T., Pelton, A., Stockel, D.: An overview of Nitinol medical applications. Mater. Sci. Eng., A 273–275, 149–160 (1999)CrossRefGoogle Scholar
  15. 15.
    Whitcher, F.D.: Simulation of in vivo loading conditions of Nitinol vascular stent structures. Comput. Struct. 64(5–6), 1005–1011 (1997)CrossRefGoogle Scholar
  16. 16.
    Souza, A.C., Mamiya, E.N., Zouain, N.: Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A/Solids 17, 789–806 (1998)CrossRefGoogle Scholar
  17. 17.
    Auricchio, F., Coda, A., Reali, A., Urbano, M.: SMA numerical modeling versus experimental results: parameter identification and model prediction capabilities. J. Mater. Eng. Perform. 18, 649–654 (2009)CrossRefGoogle Scholar
  18. 18.
    Jung, Y., Papadopoulos, P., Ritchie, R.O.: Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int. J. Numer. Meth. Eng. 60, 429–460 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Crisfield, M.A.: Nonlinear Finite Element Analysis for Solids and Structures, vol. 1, pp. 166–181. Wiley, Hoboken (2000)Google Scholar
  20. 20.
    Crisfield, M.A.: Nonlinear Finite Element Analysis for Solids and Structures, vol. 2, pp. 158–167. Wiley, Hoboken (2000)Google Scholar
  21. 21.
    Yaguchi, M., Takahashi, Y.: A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions. Int. J. Plast. 16, 241–262 (2000)CrossRefGoogle Scholar
  22. 22.
    Naghdi, P.M.: Constitutive restrictions for idealized elastic-viscoplastic materials. J. Appl. Mech. 51, 93–101 (1984)CrossRefGoogle Scholar
  23. 23.
    Kim, K.T., Cho, Y.H.: A temperature and strain rate dependent strain hardening law. Int. J. Press. Vessels Pip. 49, 327–337 (1992)CrossRefGoogle Scholar
  24. 24.
    Dowell, M., Jarratt, P.: The “Pegasus” method for computing the root of an equation. BIT 12, 503–508 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Siddhartha Patra
    • 1
  • Sarmita Sinha
    • 1
  • Abhijit Chanda
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations