Numerical Simulation of Vortex Shedding from a Cylindrical Bluff-Body Flame Stabilizer

  • Sombuddha BagchiEmail author
  • Sourav Sarkar
  • Uddalok Sen
  • Achintya Mukhopadhyay
  • Swarnendu Sen
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


A two-dimensional, laminar transient flow past a cylindrical bluff body, with methane injection perpendicular to the direction of the free stream flow, i.e. the cross-flow arrangement, is numerically studied. An unstructured grid finite volume method is used and simulations were carried out. The methane mass fraction and the injection velocity of methane injected from the slotted cylinder are altered simultaneously, and their effects on the combustion, flame characteristics, and fluid mechanics are investigated. The flame is anchored right in front of the cylinder and is stabilized by the wake of the bluff body. The current investigation illustrates the qualitative aspects of the vortex shedding phenomena. A particular case of injection velocity and mass fraction is studied in detail and its vortex shedding phenomena are analysed minutely. The non-reacting flow exhibits 2P mode of vortex shedding while the reacting flow exhibits the more common 2S mode. Fast Fourier transform analysis of the temporally fluctuating lift coefficient is performed for the different cases carried out in the present study.


  1. 1.
    Renard, P.H., Thévenin, D., Rolon, J.C.: Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26(3), 225–282 (2000)CrossRefGoogle Scholar
  2. 2.
    Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 1–28 (2002)CrossRefGoogle Scholar
  3. 3.
    Delhaye, B., Veynante, D., Candel, S.M., Minh, H.H.: Simulation and modeling of reactive shear layers. Theor. Comput. Fluid Dynam. 6, 67–87 (1994)CrossRefGoogle Scholar
  4. 4.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Poszdiech, O., Grundmann, R.: A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct. 23, 479–499 (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, H.F., Cao, H.L., Zhou, Y.: POD analysis of a finite-length cylinder near wake. Exp. Fluids 55, 1790 (2014)CrossRefGoogle Scholar
  7. 7.
    Singha, S., Singhamahapatra, K.P.: Flow past a circular cylinder between parallel walls at low Reynolds numbers. Ocean Eng. 37, 757–769 (2010)CrossRefGoogle Scholar
  8. 8.
    Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhu, M.M., Zhao, P.H., Ge, H.W., Chen, Y.L.: Simulation of vortex shedding behind a bluff body flame stabilizer using a hybrid U-RANS/PDF method. Acta. Mech. Sin. 28, 348–358 (2012)CrossRefGoogle Scholar
  10. 10.
    Raghavan, V., Shijin, P.K., Babu, V.: Numerical investigation of flame–vortex interactions in laminar cross-flow non-premixed flames in the presence of bluff bodies. Combust. Theor. Model. 20, 683–706 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Torero, J.L., Bonneau, L., Most, J.M., Joulain, P.: The effect of gravity on a laminar diffusion flame established over a horizontal flat plate. Proc. Combust. Inst. 25, 1701–1709 (1994)CrossRefGoogle Scholar
  12. 12.
    Ha, J.S., Shim, S.H., Shin, H.D.: Boundary layer diffusion flame over a flat plate in the presence and absence of flow separation. Combust. Sci. Technol. 75, 241–260 (1991)CrossRefGoogle Scholar
  13. 13.
    Hirano, T., Kanno, Y.: Aerodynamic and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame. Proc. Combust. Inst. 14, 391–398 (1973)CrossRefGoogle Scholar
  14. 14.
    Hirano, T., Kinoshita, M.: Gas velocity and temperature profiles of a diffusion flame stabilized in the stream over liquid fuel. Proc. Combust. Inst. 15, 379–387 (1975)CrossRefGoogle Scholar
  15. 15.
    Gopalakrishnan, E.D., Raghavan, V.: Numerical investigation of laminar diffusion flames established on a horizontal flat plate in a parallel air stream. Int. J. Spray Combust. Dynam. 3(2), 161–190 (2011)CrossRefGoogle Scholar
  16. 16.
    Peters, N.: Flame calculations with reduced mechanisms—an outline. In: Peters, N., Rogg, B. (eds.) Reduced Kinetic Mechanisms for Applications in Combustion Systems. Lecture Notes in Physics Monographs, vol. 15, pp. 3–14. Springer, Berlin (1993)CrossRefGoogle Scholar
  17. 17.
    Ueda, T., Ooshima, A., Saito, N., Mizomoto, M.: Aerodynamic structure of a laminar boundary layer diffusion flame over a horizontal flat plate—experimental analysis. JSME Int. J. Ser. 234-II(4), 527–532 (1991)CrossRefGoogle Scholar
  18. 18.
    Ramachandra, A., Raghunandan, B.N.: Buoyancy effects on the characteristics of a laminar boundary layer diffusion flame in a confined flow. Combust. Flame 58, 191–196 (1984)CrossRefGoogle Scholar
  19. 19.
    Rohmat, T.A., Katoh, H., Obara, T., Yoshihashi, T., Ohyagi, S.: Diffusion flame stabilized on a porous plate in a parallel airstream. AIAA J. 36(11), 1945–1952 (1998)CrossRefGoogle Scholar
  20. 20.
    Chen, C.-H., T’ien, J.S.: Diffusion flame stabilization at the leading edge of a fuel plate. Combust. Sci. Technol. 50, 283–306 (1986)CrossRefGoogle Scholar
  21. 21.
    Wang, X., Suzuki, T., Ochiai, Y., Ohyagi, S.: Numerical studies of reacting flows over flat walls with fuel injection: Part 1—velocity anomaly and hydrodynamic instability. JSME Int J. Ser. B 41(1), 19–27 (1998)CrossRefGoogle Scholar
  22. 22.
    Shijin, P.K., Sundaram, S.S., Raghavan, V.: Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body. Combust. Theor. Model. 18(6), 692–710 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lavid, M., Berlad, A.L.: Gravitational effects on chemically reacting laminar boundary layer flows over a horizontal flat plate. Proc. Combust. Inst. 16, 1557–1568 (1976)CrossRefGoogle Scholar
  24. 24.
    Raghunandan, B.N., Yogesh, G.P.: Recirculating flow over a burning surface—flame structure and heat transfer augmentation. Proc. Combust. Inst. 22, 1501–1507 (1988)CrossRefGoogle Scholar
  25. 25.
    Marble, F.E.: Growth of a diffusion flame in the field of a vortex. Recent advances in the aerospace sciences. In: Casci, C., Bruno, C. (eds.) Honor of Luigi Crocco on His 75th Birthday, Springer, Boston, MA, pp. 395–413 (1985)CrossRefGoogle Scholar
  26. 26.
    Karagozian, A.R., Marble, F.E.: Study of a diffusion flame in a stretched vortex. Combust. Sci. Technol. 45, 65–84 (1986)CrossRefGoogle Scholar
  27. 27.
    Alain, M., Candel S.M.: A numerical analysis of a diffusion flame–vortex interaction. Combust. Sci. Technol. 60, 79–96 (1988)CrossRefGoogle Scholar
  28. 28.
    Ashurst, W.T., Mcmurtry, P.A.: Flame generation of vorticity: vortex dipoles from monopoles. Combust. Sci. Technol. 66, 17–37 (1989)CrossRefGoogle Scholar
  29. 29.
    Lewis, G.S., Cantwell, B.J., Vandsburger, U., Bowman, C.T.: An investigation of the structure of a laminar non-premixed flame in an unsteady vortical flow. Symp. (Int.) Combust. 22, 515–522 (1989)CrossRefGoogle Scholar
  30. 30.
    Macaraeg, M.G., Jackson, T.L., Hussaini, M.Y.: Ignition and structure of a laminar diffusion flame in the field of a vortex. Combust. Sci. Technol. 87, 363–387 (1993)CrossRefGoogle Scholar
  31. 31.
    Rolon, J.C., Aguerre, F., Candel, S.: Experiments on the interaction between a vortex and a strained diffusion flame. Combust. Flame 100, 422–442 (1995)CrossRefGoogle Scholar
  32. 32.
    Fan, A., Wan, J., Maruta, K., Yao, H., Liu, W.: Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. Int. J. Heat Mass Trans. 66, 72–79 (2013)CrossRefGoogle Scholar
  33. 33.
    Altay, H.M., Speth, R.L., Hudgins, D.E., Ghoniem, A.F.: Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust. Flame 156(5), 1111–1125 (2009)CrossRefGoogle Scholar
  34. 34.
    Barlow, R.S., Karpetis, A., Frank, J.H., Chen, J.Y.: Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)CrossRefGoogle Scholar
  35. 35.
    Mondal, S., Mukhopadhyay, A., Sen, S.: Dynamic characterization of a laboratory scale pulse combustor. Combust. Sci. Tech. 186(2), 139–152 (2014)Google Scholar
  36. 36.
    Sen, U., Mukhopadhyay, A., Sen, S.: Effects of fluid injection on dynamics of flow past a circular cylinder. Eur. J. Mech. B/Fluids 61, 187–199 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Fujii, S., Eguchi, K.: A Comparison of non-reacting and reacting flows around a bluff-body flame stabilizer. J. Fluids Eng. 103(2), 328–334 (1981)CrossRefGoogle Scholar
  38. 38.
    Bagchi, S., Sarkar, S., Sen, U., Mukhopadhyay, A., Sen, S.: Numerical investigation of vortex shedding from a bluff body stabilised flame with cross injection. Proc. Sustain. Energy Environ. Challenges 23, 250–254 (2018)Google Scholar
  39. 39.
    Bagchi, S., Sarkar, S., Mukhopadhyay, A., Sen, S.: Numerical simulation of vortex shedding from a cylindrical bluff body flame stabilizer. In: Proceedings of International Conference of Mechanical Engineering, pp. 678–682 (2018)Google Scholar
  40. 40.
    Bharadwaj, N., Safta, C., Madnia, C.K.: Flame-wall interaction for a non-premixed flame propelled by a vortex ring. Combust. Theor. Model. 11(1), 1–19 (2007)CrossRefGoogle Scholar
  41. 41.
    Safta, C., Madnia, C.K.: Characteristics of methane diffusion flame in a reacting vortex ring. Combust. Theor. Model. 8(3), 449–474 (2004)CrossRefGoogle Scholar
  42. 42.
    Renard, P.H., Rolon, J.C., Thévenin, D., Candel, S.: Investigations of heat release, extinction, and time evaluation of the flame surface, for a non-premixed flame interacting with a vortex. Combust. Flame 117, 189–205 (1999)CrossRefGoogle Scholar
  43. 43.
    Hermanns, M., Vera, M., Liñán, A.: On the dynamics of flame edges in diffusion-flame/vortex interactions. Combust. Flame 149, 32–48 (2007)CrossRefGoogle Scholar
  44. 44.
    Mishra, S., Santhosh, R., Basu, S.: Scalar transport in diffusion flame wrapped up by an air and fuel side vortex. Int. Comm. Heat Mass Trans. 47, 32–40 (2013)CrossRefGoogle Scholar
  45. 45.
    Cetegen, B.M., Mohamad, N.: Experiments on liquid mixing and reaction in a vortex. J. Fluid Mech. 249, 391–414 (1993)CrossRefGoogle Scholar
  46. 46.
    Thiesset, F., Maurice, G., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Flame-vortex interaction: effect of residence time and formulation of a new efficiency function. Proc. Combust. Inst. 36(2), 1843–1851 (2017)CrossRefGoogle Scholar
  47. 47.
    Stöhr, M., Boxx, I., Carter, C.D., Meier, W.: Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159(8), 2636–2649 (2012)CrossRefGoogle Scholar
  48. 48.
    Smooke, M.D., Puri, I.K., Seshadri, K.: A comparison between numerical calculations and experimental measurements of the structure of a counter flow diffusion flame burning diluted methane in diluted air. In: 21st Symposium (International) on Combustion. The Combustion Institute, pp. 1783–1792 (1986)Google Scholar
  49. 49.
    Braza, M., Chassaing, P., Ha, M.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Liu, C., Zheng, X., Sung, C.H.: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139, 35–57 (1998)CrossRefGoogle Scholar
  51. 51.
    Park, J., Kwon, K., Choi, H.: Numerical solutions of flow past a circular cylinder at Reynolds number up to 160. KSME Int. J. 12(6), 1200–1205 (1998)CrossRefGoogle Scholar
  52. 52.
    Meneghini, J.R., Saltara, F., Siqueira, C.L.R., Ferrari Jr., J.A.: Numerical simulation off low interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15, 327–350 (2001)CrossRefGoogle Scholar
  53. 53.
    Shi, J.-M., Gerlach, D., Breuer, M., Biswas, G., Durst, F.: Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys. Fluids 16(12), 4331–4345 (2004)CrossRefGoogle Scholar
  54. 54.
    Ding, H., Shu, C., Yeo, K.S., Xu, D.: Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. Int. J. Numer. Methods Fluids 53, 305–332 (2007)CrossRefGoogle Scholar
  55. 55.
    Mittal, S.: Instability of the separated shear layer in flow past a cylinder: forced excitation. Int. J. Numer. Methods Fluids 56, 687–702 (2008)CrossRefGoogle Scholar
  56. 56.
    Rajani, B.N., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33, 1228–1247 (2009)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Li, Y., Zhang, R., Shock, R., Chen, H.: Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach. Eur. Phys. J. 171, 91–97 (2009)Google Scholar
  58. 58.
    Harichandan, A.B., Roy, A.: Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. Int. J. Heat Fluid Flow 31, 154–171 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sombuddha Bagchi
    • 1
    Email author
  • Sourav Sarkar
    • 1
  • Uddalok Sen
    • 2
  • Achintya Mukhopadhyay
    • 1
  • Swarnendu Sen
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Mechanical EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations