Advertisement

MHD Convection with Heat Generation in a Porous Cavity

  • Soumyodeep MukherjeeEmail author
  • Nirmalendu Biswas
  • Nirmal K. Manna
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.

Keywords

Magneto-hydrodynamics Porous cavity Heat generation–absorption Thermal convection 

Nomenclature

B

Uniform magnetic field (tesla)

Da

Darcy number

G

Ratio of heat generation–absorption

H

Height of the cavity/length scale, m

Ha

Hartmann number

\(K\)

Permeability of porous medium, m2

\(L\)

Length of the cavity, m

\(Nu\)

Average Nusselt number

\(p\)

Pressure, Pa

\(P\)

Dimensionless pressure

\(Pr\)

Prandtl number

\(Ra\)

External Rayleigh number

\(Ra_{\text{I}}\)

Internal Rayleigh number

\(Ra_{\text{m}}\)

Modified Darcy–Rayleigh number

\(T\)

Temperature, K

\(g\)

Velocity components, m/s

\(U,V\)

Dimensionless velocity components

\(x,y\)

Cartesian coordinates, m

\(X,Y\)

Dimensionless coordinates

Greek Symbols

\(\alpha\)

Thermal diffusivity, m2/s

\(\beta\)

Thermal expansion coefficient, K−1

\(\gamma\)

Inclination angle of the magnetic field

\(\theta\)

Dimensionless temperature

ε

Porosity

\(\upsilon\)

Kinematic viscosity, m2/s

\(\rho\)

Density, kg/m3

\(\kappa\)

Electrical conductivity (μS cm−1)

\(\psi\)

Dimensionless stream function

Subscripts

\({\text{c}},{\text{h}}\)

Cooling, heating

References

  1. 1.
    Sheikholeslami, M.: Numerical simulation of magnetic nanofluid natural convection in porous media. Phy. Lett. A. 381, 494–503 (2017)CrossRefGoogle Scholar
  2. 2.
    Oztop, H., Bilgen, E.: Natural convection in differentially heated and partially. Int. J. Heat Fluid Flow. 27, 466–475 (2016)CrossRefGoogle Scholar
  3. 3.
    Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)CrossRefGoogle Scholar
  4. 4.
    El-Amin, M.F.: Combined effect of internal heat generation and magnetic field. J. Magn. Magn. Mater. 270, 130–135 (2004)CrossRefGoogle Scholar
  5. 5.
    Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRefGoogle Scholar
  6. 6.
    Sivaraj, C., Sheremet, M.A.: MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J. Magn. Magn. Mater. 426, 351–360 (2017)CrossRefGoogle Scholar
  7. 7.
    Selimefendigil, F., Öztop, H.F.: Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J. Magn. Magn. Mater. 417, 327–337 (2016)CrossRefGoogle Scholar
  8. 8.
    Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity witha local heatsource. J. Magn. Magn. Mater. 419, 476–484 (2017)CrossRefGoogle Scholar
  9. 9.
    Mahmoudi, A., Mejri, I., Abbassi, M.A., Omri, A.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder. Technol. 256, 257–271 (2014)CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder. Technol. 235, 873–879 (2013)CrossRefGoogle Scholar
  12. 12.
    Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder. Technol. 239, 259–265 (2013)CrossRefGoogle Scholar
  13. 13.
    Kefayati, G.H.R.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder. Technol. 243, 171–183 (2013)CrossRefGoogle Scholar
  14. 14.
    Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat. Mass. Transf. 40, 67–77 (2013)CrossRefGoogle Scholar
  15. 15.
    Mliki, B., Abbassi, M.A., Omri, A., Zeghmati, B.: Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder. Technol. 284, 312–325 (2015)CrossRefGoogle Scholar
  16. 16.
    Malik, S., Nayak, A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat. Mass. Transf. 111, 329–345 (2017)CrossRefGoogle Scholar
  17. 17.
    Mojumder, S., Rabbi, K.M., Saha, S., Hasan, M.N., Saha, S.C.: Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J. Magn. Magn. Mater. 407, 412–424 (2016)CrossRefGoogle Scholar
  18. 18.
    Bondareva, N.S., Sheremet, M.A., Pop, I.: Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int. J. Numer. Methods. Heat Fluid Flow. 25, 1924–1946 (2015)CrossRefGoogle Scholar
  19. 19.
    Sheremet, M.A., Pop, I., Rosca, N.C.: Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)CrossRefGoogle Scholar
  20. 20.
    Karimipour, A., Taghipour, A., Malvandi, A.: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater. 419, 420–428 (2016)CrossRefGoogle Scholar
  21. 21.
    Malvandi, A.: Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater. 406, 95–102 (2016)CrossRefGoogle Scholar
  22. 22.
    Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015)CrossRefGoogle Scholar
  23. 23.
    Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J. Phy. 56, 193–211 (2018)CrossRefGoogle Scholar
  24. 24.
    Gibanov, N.S., Sheremet, M.A., Oztop, H.A., Al-Salem, K.: MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 452, 193–204 (2018)CrossRefGoogle Scholar
  25. 25.
    Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)CrossRefGoogle Scholar
  26. 26.
    Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transf. 52, 1525–1533 (2009)CrossRefGoogle Scholar
  27. 27.
    Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. Int. J. Heat Mass Transf. 54, 1734–1742 (2011)CrossRefGoogle Scholar
  28. 28.
    Jiang, C., Feng, W., Zhong, H., Zeng, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J. Magn. Magn. Mater. 357, 53–60 (2014)CrossRefGoogle Scholar
  29. 29.
    Nayak, A.K., Malik, S., Venkateshwarlu, K., Jena, P.K.: Magneto-convection and its effect on partially active thermal zones in a porous square domain. Int. J. Heat Mass Transf. 95, 913–926 (2016)CrossRefGoogle Scholar
  30. 30.
    Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review, Renew. Sustain Energy Rev. 21, 548–561 (2013)CrossRefGoogle Scholar
  31. 31.
    Sarkar, S., Ganguly, S., Biswas, G.: Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int. J. Heat Mass Transf. 71, 328–340 (2014)CrossRefGoogle Scholar
  32. 32.
    Chamkha, A.: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption. Numer. Heat Transf. Part A 41, 529–546 (2002)CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami, M., Rashidi, M., Hayat, T., Ganji, D.: Free convection of magnetic nanofluid considering mfd viscosity effect. J. Mol. Liq. 218, 393–399 (2016)CrossRefGoogle Scholar
  35. 35.
    Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 98, 40–51 (2016)CrossRefGoogle Scholar
  36. 36.
    Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin, Germany (2006)zbMATHGoogle Scholar
  37. 37.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, Hemisphere (1980)Google Scholar
  38. 38.
    Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111, 305–329 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soumyodeep Mukherjee
    • 1
    Email author
  • Nirmalendu Biswas
    • 1
  • Nirmal K. Manna
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations