Experimental Investigation on Static and Free Vibration Behavior of Concentrically Stiffened Plates

  • Sayantan Mandal
  • Anirban MitraEmail author
  • Prasanta Sahoo
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Experimental investigation and simulation study of different types of concentrically stiffened plates under static and dynamic conditions are accomplished in the present paper with an objective to establish the static deflection and natural frequency characteristics under loading. One unstiffened plate and five types of concentrically stiffened plate specimens are experimented upon in the laboratory with the help a specialized setup that simulates clamped end condition at the plate edges. There is provision for pneumatic application of transverse uniformly distributed load. The above-mentioned plate specimens are categorized on the basis of number and arrangement of the concentric stiffeners on the plate face. Finite element simulation is also performed through commercial software ANSYS Mechanical APDL 15.0 for independent validation and comparison of experimental data. Load–deflection plots and backbone curves in non-dimensional planes are presented as results.


Concentric stiffened plate Static deflection Loaded natural frequency ANSYS Backbone curves 


  1. 1.
    Bedair, O.K.: A contribution to the stability of stiffened plates under uniform compression. Comput. Struct. 66(5), 535–570 (1998)CrossRefGoogle Scholar
  2. 2.
    Yamki, N., Otomo, K., Chiba, M.: Nonlinear vibrations of a clamped rectangular plate with initial deflection and initial edge displacement – part II: Experiment. Thin-Walled Struct. 1(2), 101–119 (1983)CrossRefGoogle Scholar
  3. 3.
    Bau-Madsen, N.K., Svendsen, K.H., Kildegaard, A.: Large deflections of sandwich plates-an experimental investigation. Compos. Struct. 23(1), 47–52 (1993)CrossRefGoogle Scholar
  4. 4.
    Kumar, M.S., Alagusundaramoorthy, P., Sundaravadivelu, R.: Ultimate strength of stiffened plates with a square opening under axial and out-of-plane loads. Eng. Struct. 31(11), 2568–2579 (2009)CrossRefGoogle Scholar
  5. 5.
    Xu, M.C., Soares, C.G.: Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels. Mar. Struct. 31, 82–101 (2013)CrossRefGoogle Scholar
  6. 6.
    Pedram, M., Khedmati, M.R.: The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure. Int. J. Naval Arch. Ocean Eng. 6(1), 39–59 (2014)CrossRefGoogle Scholar
  7. 7.
    Shanmugam, N.E., Dongqi, Z., Choo, Y.S., Arockiaswamy, M.: Experimental studies on stiffened plates under in-plane load and lateral pressure. Thin-Walled Struct. 80, 22–31 (2014)CrossRefGoogle Scholar
  8. 8.
    Liu, K., Wang, Z., Tang, W., Zhang, Y., Wang, G.: Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate. Ocean Eng. 99, 44–54 (2015)CrossRefGoogle Scholar
  9. 9.
    Zheng, C., Kong, X.S., Wu, W.G., Liu, F.: The elastic-plastic dynamic response of stiffened plates under confined blast load. Int. J. Impact Eng. 95, 141–153 (2016)CrossRefGoogle Scholar
  10. 10.
    Morin, D., Kaarstad, B.L., Skajaa, B., Hopperstad, O.S., Langseth, M.: Testing and modelling of stiffened aluminium panels subjected to quasi-static and low-velocity impact loading. Int. J. Impact Eng. 110, 97–111 (2017)CrossRefGoogle Scholar
  11. 11.
    Fahy, F.J., Wee, R.B.S.: Some experiments with stiffened plates under acoustic excitation. J. Sound Vib. 7(3), 431–436 (1968)CrossRefGoogle Scholar
  12. 12.
    Yurkovich, R.N., Schmidt, J.H., Zak, A.R.: Dynamic analysis of stiffened panel structures. J. Aircr. 8(3), 149–155 (1971)CrossRefGoogle Scholar
  13. 13.
    Olson, M.D., Hazell, C.R.: Vibration studies on some integral rib-stiffened plates. J. Sound Vib. 50(1), 43–61 (1977)CrossRefGoogle Scholar
  14. 14.
    Wilson, J.F., Henry, J.K., Clark, R.L.: Measured free vibrations of partially clamped square plates. J. Sound Vib. 231(5), 1311–1320 (2000)CrossRefGoogle Scholar
  15. 15.
    Sheikh, A.H., Mukhopadhyay, M.: Linear and nonlinear transient vibration analysis of stiffened plate structures. Finite Elem. Anal. Des. 38(6), 477–502 (2002)CrossRefGoogle Scholar
  16. 16.
    Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291(3), 539–565 (2006)CrossRefGoogle Scholar
  17. 17.
    Qing, G., Qiu, J., Liu, Y.: Free vibration analysis of stiffened laminated plates. Int. J. Solids Struct. 43(6), 1357–1371 (2006)CrossRefGoogle Scholar
  18. 18.
    Hu, H.T., Li, Y.L., Tao, S.U.O., Feng, Z.H.A.O., Miao, Y.G., Pu, X.U.E., Qiong, D.E.N.G.: Fatigue behavior of aluminum stiffened plate subjected to random vibration loading. Trans. Nonferrous Met. Soc. China 24(5), 1331–1336 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhou, X.Q., Yu, D.Y., Shao, X., Wang, S., Zhang, S.Q.: Simplified-super-element-method for analyzing free flexural vibration characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material. Thin-Walled Struct. 94, 234–252 (2015)CrossRefGoogle Scholar
  20. 20.
    Cho, D.S., Kim, B.H., Kim, J.H., Choi, T.M., Vladimir, N.: Free vibration analysis of stiffened panels with lumped mass and stiffness attachments. Ocean Eng. 124, 84–93 (2016)CrossRefGoogle Scholar
  21. 21.
    Mitra, A., Sahoo, P., Saha, K.N.: In: Proceedings of the IASTED International Conference Engineering and Applied Science - EAS’2012, Colombo, Sri Lanka, pp. 6–13 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sayantan Mandal
    • 1
  • Anirban Mitra
    • 1
    Email author
  • Prasanta Sahoo
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations