Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene

  • Saswata BoseEmail author
  • Arit Das
  • Anirban Ghosh
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Graphene nanoplatelets (GnPs) belong to a category of recently innovated inexpensive materials that comprises of a small pile of graphite layers that has often been employed to augment the tensile strength of composites. In this work, acid modified Polyacroyl chloride (PACl)-functionalized GnP has been incorporated in epoxy (Epon 828) matrix and the effect of solution processing on the thermal, viscoelastic and mechanical properties of the nanocomposites was investigated.  As a result of the acid treatment, hydroxl groups were incorporated on to the GnP backbone which in turn served as a site for covalent bonding with the acyl chloride groups of PACl. The unreacted acyl chloride groups bonded to the epoxy in the nanocomposite. The nanocomposites were prepared in the presence of acetone as a solvent (solvent processed) and also in the absence of solvent. The fractured surfaces of the prepared nanocomposites upon tensile testing were examined using scanning electron microscopy (SEM) which revealed the strong interfacial bonding between the functionalized GnPs and epoxy matrix. The thermal and viscoelastic properties of the nanocomposites were characterized by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. It could be concluded that the mechanical and thermal properties of epoxy nanocomposites were improved to an appreciable extent upon the incorporation of functionalized GnPs and the processing conditions played a pivotal role in controlling the aforementioned properties.


Graphene nanoplatelets Nanocomposites Epoxy composites Mechanical properties Materials processing 


  1. 1.
    Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)Google Scholar
  2. 2.
    Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRefGoogle Scholar
  3. 3.
    Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., Zhang, J.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014)CrossRefGoogle Scholar
  4. 4.
    Cai, W., Zhu, Y., Li, X., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12), 123115 (2009)CrossRefGoogle Scholar
  5. 5.
    Wang, G., Shen, X., Yao, J., Park, J.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47 (8), 2049–2053 (2009)CrossRefGoogle Scholar
  6. 6.
    Bose, S., Basu, S., Das, A., Rahman, M., Drzal, L.T.: Fabrication of a sulfonated aramid-graphene nanoplatelet composite paper and its performance as a supercapacitor electrode. J. Appl. Polym. Sci. 134(29), 45099 (2017)CrossRefGoogle Scholar
  7. 7.
    Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. Engl. 49(17), 3014–3017 (2010)CrossRefGoogle Scholar
  8. 8.
    Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. 3(11), 4221–4227 (2011)CrossRefGoogle Scholar
  9. 9.
    Bose, S., Das, A., Basu, S., Drzal, L.T.: Edge stitching of graphene nanoplatelets (GnPs) and their effectiveness as a filler for epoxy nanocomposites. ChemistrySelect 2(20), 5769–5774 (2017)CrossRefGoogle Scholar
  10. 10.
    Bose, S., Das, A., Basu, S., Drzal, L.T.: Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite. Polym. Compos. 298, 339 (2017)Google Scholar
  11. 11.
    Liu, Z., Shen, D., Yu, J., Dai, W., Li, C., Du, S., Jiang, N., Li, H., Lin, C.T.: Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Advances 6, 22364–22369 (2016)CrossRefGoogle Scholar
  12. 12.
    Zeng, C., Lu, S., Song, L., Xiao, X., Gao, J., Pan, L., He, Z., Yu, J.: Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites. RSC Advances 5, 35773–35782 (2015)CrossRefGoogle Scholar
  13. 13.
    Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., Leng, J.: Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 25, 015021 (2016)CrossRefGoogle Scholar
  14. 14.
    Wajid, A.S., Ahmed, H.S., Das, S., Irin, F., Jankowski, A.F., Green, M.J.: High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013)CrossRefGoogle Scholar
  15. 15.
    Balakrishnan, S., Start, P.R., Raghavan, D., Hudson, S.D.: The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46, 11255–11262 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Wang, Y., Yu, J., Chen, L., Zhu, J., Hu, Z.: Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55, 4990–5000 (2014)CrossRefGoogle Scholar
  17. 17.
    Mittal, V.: Functional polymer nanocomposites with graphene: a review. Macromol. Mater. Eng. 299, 906–931 (2014)CrossRefGoogle Scholar
  18. 18.
    Sofer, Z., Simek, P., Pumera, M.: Complex organic molecules are released during thermal reduction of graphite oxides. Phys. Chem. Chem. Phys. 15, 9257–9264 (2013)CrossRefGoogle Scholar
  19. 19.
    Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., WangD, Xie G., Shi, D., Zhang, G.: Restoration of graphene from graphene oxide by defect repair. Carbon 50, 2581–2587 (2012)CrossRefGoogle Scholar
  20. 20.
    Yang, K., Gu, M., Guo, Y., Pan, X., Mu, G.: Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47, 1723–1737 (2009)CrossRefGoogle Scholar
  21. 21.
    Kim, M.G., Moon, J.B., Kim, C.G.: Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos. A Appl. Sci. Manuf. 43, 1620–1627 (2012)CrossRefGoogle Scholar
  22. 22.
    Rahman, M.M., Hosur, M., Zainuddin, S., Jajam, K.C., Tippur, H.V., Jeelani, S.: Mechanical characterization of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized MWCNTs. Polym. Testing 31, 1083–1093 (2012)CrossRefGoogle Scholar
  23. 23.
    Damian, C.M., Garea, S.A., Vasile, E., Iovu, H.: Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos. B Eng. 43, 3507–3515 (2012)CrossRefGoogle Scholar
  24. 24.
    Zou, W., Du, Z.J., Liu, Y.X., Yang, X., Li, H.Q., Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT–epoxy matrix nanocomposites. Compos. Sci. Technol. 68, 3259–3264 (2008)CrossRefGoogle Scholar
  25. 25.
    Ho, S.S., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., Jeon,S.: Enhanced thermal conductivity of epoxy–graphene composites by using non‐oxidized graphene flakes with non‐covalent functionalization. Adv. Mater. 25, 732–737 (2013)Google Scholar
  26. 26.
    Lee, J.K., Song, S., Kim, B.: Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym. Compos. 33, 1263–1273 (2012)CrossRefGoogle Scholar
  27. 27.
    Jin, F.L., Ma, C.J., Park, S.J.: Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng., A 528, 8517–8522 (2011)CrossRefGoogle Scholar
  28. 28.
    Nadler, M., Werner, J., Mahrholz, T., Riedel, U., Hufenbach, W.: Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. A Appl. Sci. Manuf. 40, 932–937 (2009)CrossRefGoogle Scholar
  29. 29.
    Geng, Y., Liu, M.Y., Li, J., Shi, X.M., Kim, J.K.: Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39, 1876–1883 (2008)CrossRefGoogle Scholar
  30. 30.
    Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M.: Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 38(5), 1331–1336 (2007)CrossRefGoogle Scholar
  31. 31.
    Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRefGoogle Scholar
  33. 33.
    Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRefGoogle Scholar
  34. 34.
    Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007)CrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRefGoogle Scholar
  36. 36.
    Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, 6331–6334 (2009)CrossRefGoogle Scholar
  37. 37.
    MohammadiA, Peighambardoust S.J., Entezami, A.A., Arsalani, N.: High performance of covalently grafted poly (o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 5776–5787 (2017)Google Scholar
  38. 38.
    Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitian, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54, 2086–2089 (2018)CrossRefGoogle Scholar
  39. 39.
    Criado, A., Melchionna, M., Marchesan, S., Prato, M.: The covalent functionalization of graphene on substrates. Angew.Chem. Int. Ed. 54, 10734–10750 (2015)CrossRefGoogle Scholar
  40. 40.
    Naebe, M., Wang, J., Amini, A., Khayyam, H., Hammed, N., Li, L.H., Chen, Y., Fox, B.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014)CrossRefGoogle Scholar
  41. 41.
    Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22, 405603 (2011)CrossRefGoogle Scholar
  42. 42.
    Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)CrossRefGoogle Scholar
  43. 43.
    Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)CrossRefGoogle Scholar
  44. 44.
    Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., Taheri, F.: Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 66, 142–149 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations