Pathology of Breast Cancer

  • Sitki Tuzlali
  • Ekrem Yavuz


Histopathologically, breast carcinoma can be simply divided into two major categories based on the involvement of the ductal-lobular system of the breast. Ductal carcinoma in situ (DCIS) is characterized by the neoplastic proliferation of epithelial cells confined to the ductal-lobular system of the breast without evidence of invasion through the basement membrane into the surrounding stroma. Most cases of DCIS are positive for estrogen receptor (ER). ER expression correlates with the grade of DCIS. The entire spectrum of atypical epithelial lesions originating in the terminal ductal-lobular unit (TDLU) of the breast, characterized by the proliferation of generally small, dyscohesive cells, is called lobular neoplasia (LN). When more than half of the acini of a lobular unit are distended and distorted, the lesion is called lobular carcinoma in situ (LCIS). Invasive carcinomas can broadly be divided into two categories: invasive carcinoma of no special type (NST) and special subtypes. NST is the most common type of invasive breast cancer and represents up to 75% of all cases in published series. Terms such as infiltrating ductal carcinoma and invasive ductal carcinoma, not otherwise specified (NOS), are also used. A tumor should be called invasive ductal carcinoma (IDC) NST if it cannot be categorized as one of the special or rare types.


Histopathology Carcinoma in situ Invasive NOS Estrogen receptor Progesteron receptor Pleomorphic Microinvasive Osteoclast-like Stromal giant cells Tubular Invasive cribriform Mucinous Signet ring cell Apocrine Micropapillary Metaplastic Adenosquamous Fibromatosis-like Matrix-producing Neuroendocrine Papillary Glycogen-rich Inflammatory 


  1. 1.
    Ellis IO. Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol. 2010;23(Suppl 2):S1–7.CrossRefGoogle Scholar
  2. 2.
    Lakhani S, Ellis IO, Tan PH, van de Vijver MJ, editors. World Health Organization classification of tumors, WHO classification of tumors of the breast. 2nd ed. Lyon: IARC; 2012.Google Scholar
  3. 3.
    Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, Members of the Cancer Committee, College of American Pathologists, et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med. 2009;133(1):15–25.Google Scholar
  4. 4.
    Consensus conference on the classification of ductal carcinoma in situ. Hum Pathol. 1997;28:1221–5.Google Scholar
  5. 5.
    Schwartz GF, Solin LJ, Olivotto IA, Ernster VL, Pressman P. Breast. 2000;9:177–86.CrossRefGoogle Scholar
  6. 6.
    Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, Zafrani B. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994;11(3):167–80.Google Scholar
  7. 7.
    Page DL, Dupont WD, Rogers LW, Rados MS. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55:2698–708.CrossRefGoogle Scholar
  8. 8.
    Tavassoli FA, Norris HJ. A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer. 1990;165(3):518–29.CrossRefGoogle Scholar
  9. 9.
    Schnitt SJ. Clinging carcinoma: an American perspective. Semin Diagn Pathol. 2010;27(1):31–6.CrossRefGoogle Scholar
  10. 10.
    Aroner SA, Collins LC, Schnitt SJ, Connolly JL, Colditz GA, Tamimi RM. Columnar cell lesions and subsequent breast cancer risk: a nested case-control study. Breast Cancer Res. 2010;12(4):R61.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Eusebi V, Magalhaes F, Azzopardi JG. Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol. 1992;23:655–62.CrossRefGoogle Scholar
  12. 12.
    O’Malley FP. Lobular neoplasia: morphology, biological potential and management in core biopsies. Mod Pathol. 2010;23:S14–25.CrossRefGoogle Scholar
  13. 13.
    Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361:125–9.CrossRefGoogle Scholar
  14. 14.
    Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171–92.CrossRefGoogle Scholar
  15. 15.
    Bagaria SP, Shamonki J, Kinnaird M, Ray PS, Giuliano AE. The florid subtype of lobular carcinoma in situ: marker or precursor for invasive lobular carcinoma? Ann Surg Oncol. 2011;18(7):1845–51.CrossRefGoogle Scholar
  16. 16.
    Shin SJ, Lal A, De Vries S, Suzuki J, Roy R, Hwang ES, et al. Florid lobular carcinoma in situ: molecular profiling and comparison to classic lobular carcinoma in situ and pleomorphic lobular carcinoma in situ. Hum Pathol. 2013;44(10):1998–2009.CrossRefGoogle Scholar
  17. 17.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti H (eds). American Joint Committee on Cancer (AJCC) cancer staging manual 7th ed. New York, Springer, 2009.Google Scholar
  18. 18.
    Prasad ML, Osborne MP, Giri DD, Hoda SA. Microinvasive carcinoma (T1mic) of the breast: clinicopathologic profile of 21 cases. Am J Surg Pathol. 2000;24(3):422–8.CrossRefGoogle Scholar
  19. 19.
    Rosai J. Breast. In: Rosai and Ackerman’s surgical pathology. 9th ed. New York: Mosby; 2004. p. 1763–876.Google Scholar
  20. 20.
    Silver SA, Tavassoli FA. Pleomorphic carcinoma of the breast: clinicopathological analysis of 26 cases of an unusual high-grade phenotype of ductal carcinoma. Histopathology. 2000;36(6):505–14.CrossRefGoogle Scholar
  21. 21.
    Nguyen CV, Falcón-Escobedo R, Hunt KK, Nayeemuddin KM, Lester TR, Harrell RK, et al. Pleomorphic ductal carcinoma of the breast: predictors of decreased overall survival. Am J Surg Pathol. 2010;34(4):486–93.CrossRefGoogle Scholar
  22. 22.
    Tavassoli FA, Norris HJ. Breast carcinoma with osteoclastlike giant cells. Arch Pathol Lab Med. 1986;110(7):636–9.Google Scholar
  23. 23.
    Rosen PP. Rosen’s breast pathology. 3rd ed. Philadelphia: Lippincott Williams & Wolters Kluwer Business; 2009.Google Scholar
  24. 24.
    Tavassoli FA, Eusebi V, editors. Tumors of the mammary gland. AFIP atlas of tumor pathology. Fourth series; fasc 10. Washington DC: American Registry of Pathology in Collaboration with the Armed Institute of Pathology; 2009.Google Scholar
  25. 25.
    Athanasou NA, Wells CA, Quinn J, Ferguson DP, Heryet A, McGee JO. The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: implications for tumour osteolysis and macrophage biology. Br J Cancer. 1989;59(4):491–8.PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shishido-Hara Y, Kurata A, Fujiwara M, Itoh H, Imoto S, Kamma H. Two cases of breast carcinoma with osteoclastic giant cells: are the osteoclastic giant cells pro-tumoural differentiation of macrophages? Diagn Pathol. 2010;5:55–61.PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW. Infiltrating lobular carcinoma of the breast. Histopathology. 1982;6(2):149–61.CrossRefGoogle Scholar
  28. 28.
    Tavassoli FA. Pathology of the breast. 2nd ed. New York: Appleton & Lange; 1999.Google Scholar
  29. 29.
    Fechner RE. Histologic variants of infiltrating lobular carcinoma of the breast. Hum Pathol. 1975;6(3):373–8.CrossRefGoogle Scholar
  30. 30.
    Weidner N, Semple JP. Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol. 1992;23(10):1167–71.CrossRefGoogle Scholar
  31. 31.
    Middleton LP, Palacios DM, Bryant BR, Krebs P, Otis CN, Merino MJ. Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol. 2000;24(12):1650–6.CrossRefGoogle Scholar
  32. 32.
    Walford N, ten Velden J. Histiocytoid breast carcinoma: an apocrine variant of lobular carcinoma. Histopathology. 1989;14(5):515–22.CrossRefGoogle Scholar
  33. 33.
    Eusebi V, Foschini MP, Bussolati G, Rosen PP. Myoblastomatoid (histiocytoid) carcinoma of the breast. A type of apocrine carcinoma. Am J Surg Pathol. 1995;19(5):553–62.CrossRefGoogle Scholar
  34. 34.
    Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.CrossRefGoogle Scholar
  35. 35.
    Qureshi HS, Linden MD, Divine G, Raju UB. E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am J Clin Pathol. 2006;125(3):377–85.CrossRefGoogle Scholar
  36. 36.
    Da Silva L, Parry S, Reid L, Keith P, Waddell N, Kossai M, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.CrossRefGoogle Scholar
  37. 37.
    Sarrió D, Pérez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23(19):3272–83.CrossRefGoogle Scholar
  38. 38.
    Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ, et al. Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer. 2008;44(1):73–83.CrossRefGoogle Scholar
  39. 39.
    Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, et al. International breast cancer study group. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 international breast cancer study group clinical trials. Eur J Cancer. 2008;44(1):73–83.CrossRefGoogle Scholar
  40. 40.
    Rakha EA, van Deurzen CH, Paish EC, Macmillan RD, Ellis IO, Lee AH. Pleomorphic lobular carcinoma of the breast: is it a prognostically significant pathological subtype independent of histological grade? Mod Pathol. 2013;26(4):496–501.CrossRefGoogle Scholar
  41. 41.
    Rakha EA, Lee AHS, Evans AJ, Menon S, Assad NY, Hodi Z, et al. Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol. 2010;28(1):99–104.CrossRefGoogle Scholar
  42. 42.
    Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol. 1999;17(5):1442–8.CrossRefGoogle Scholar
  43. 43.
    Page DL, Dixon JM, Anderson TJ, et al. Invasive cribriform carcinoma of the breast. Histopathology. 1983;7(4):525–36.CrossRefGoogle Scholar
  44. 44.
    Ellis IO, Galea M, Broughton N, Locker A, Blamer RW, Elston CW. Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long term of follow up. Histopathology. 1992;20:479–89.CrossRefGoogle Scholar
  45. 45.
    Venable JG, Schwartz AM, Silverberg SG. Infiltrating cribriform carcinoma of the breast: a distinctive clinicopathologic entity. Hum Pathol. 1990;21(3):333–8.CrossRefGoogle Scholar
  46. 46.
    Vu-Nishino H, Tavassoli FA, Ahrens WA, Haffty BG. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int J Radiat Oncol Biol Phys. 2005;62(4):1040–7.CrossRefGoogle Scholar
  47. 47.
    Marginean F, Rakha EA, Ho BC, Ellis IO, Lee AH. Histological features of medullary carcinoma and prognosis in triple-negative basal-like carcinomas of the breast. Mod Pathol. 2010;23(10):1357–63.CrossRefGoogle Scholar
  48. 48.
    Tan PH, Tse GM, Bay BH. Mucinous breast lesions: diagnostic challenges. J Clin Pathol. 2008;61(1):11–9.CrossRefGoogle Scholar
  49. 49.
    Capella C, Eusebi V, Mann B, Azzopardi JG. Endocrine differentiation in mucoid carcinoma of the breast. Histopathology. 1980;4(6):613–30.CrossRefGoogle Scholar
  50. 50.
    Di Saverio S, Gutierrez J, Avisar E. A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat. 2008;111(3):541–7.CrossRefGoogle Scholar
  51. 51.
    Tavassoli FA, Purcell CA, Bratthauer GL, Man YG. Androgen receptor positivity along with loss of bcl-2, ER, and PR expression in benign and malignant apocrine lesions of the breast. Implications for therapy. Breast J. 1996;2:1–10.CrossRefGoogle Scholar
  52. 52.
    Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2010;23(2):205–12.CrossRefGoogle Scholar
  53. 53.
    Dellapasqua S, Maisonneuve P, Viale G, Pruneri G, Mazzarol G, Ghisini R, et al. Immunohistochemically defined subtypes and outcome of apocrine breast cancer. Clin Breast Cancer. 2013;13(2):95–102.CrossRefGoogle Scholar
  54. 54.
    Siriaunkgul S, Tavassoli FA. Invasive micropapillary carcinoma of the breast. Mod Pathol. 1993;6(6):660–2.Google Scholar
  55. 55.
    Ueng SH, Mezzetti T, Tavassoli FA. Papillary neoplasms of the breast: a review. Arch Pathol Lab Med. 2009;133:893–907.Google Scholar
  56. 56.
    Zekioglu O, Erhan Y, Ciris M, Bayramoglu H, Ozdemir N. Invasive micropapillary carcinoma of the breast: high incidence of lymph node metastasis with extranodal extension and its immunohistochemical profile compared with invasive ductal carcinoma. Histopathology. 2004;44(1):18–23.CrossRefGoogle Scholar
  57. 57.
    Vingiani A, Maisonneuve P, Dell'orto P, Farante G, Rotmensz N, Lissidini G, et al. The clinical relevance of micropapillary carcinoma of the breast: a case-control study. Histopathology. 2013;63(2):217–24.CrossRefGoogle Scholar
  58. 58.
    Meng F, Liu B, Xie G, Song Y, Zheng X, Qian X, et al. Amplification and overexpression of PSCA at 8q24 in invasive micropapillary carcinoma of breast. Breast Cancer Res Treat. 2017;166(2):383–92.CrossRefGoogle Scholar
  59. 59.
    Onder S, Fayda M, Karanlık H, Bayram A, Şen F, Cabioglu N, et al. Loss of ARID1A expression is associated with poor prognosis in invasive micropapillary carcinomas of the breast: a clinicopathologic and immunohistochemical study with long-term survival analysis. Breast J. 2017;23(6):638–46.CrossRefGoogle Scholar
  60. 60.
    Luini A, Aguilar M, Gatti G, Fasani R, Botteri E, Brito JA, et al. Metaplastic carcinoma of the breast, an unusual disease with worse prognosis: the experience of the European institute of oncology and review of the literature. Breast Cancer Res Treat. 2007;101(3):349–53.CrossRefGoogle Scholar
  61. 61.
    Tavassoli FA. Classification of metaplastic carcinomas of the breast. Pathol Annu. 1992;27(Pt 2):89–119.Google Scholar
  62. 62.
    Foschini MP, Eusebi V. Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch. 1998;432(4):303–10.CrossRefGoogle Scholar
  63. 63.
    Van Hoeven KH, Drudis T, Cranor ML, Erlandson RA, Rosen PP. Low-grade adenosquamous carcinoma of the breast. A clinocopathologic study of 32 cases with ultrastructural analysis. Am J Surg Pathol. 1993;17(3):248–58.CrossRefGoogle Scholar
  64. 64.
    Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, Gown AM, Ayala A. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25(8):1009–16.CrossRefGoogle Scholar
  65. 65.
    Takano EA, Hunter SM, Campbell IG, Fox SB. Low-grade fibromatosis-like spindle cell carcinomas of the breast are molecularly exiguous. J Clin Pathol. 2015;68(5):362–7.CrossRefGoogle Scholar
  66. 66.
    Reis-Filho JS, Milanezi F, Paredes J, Silva P, Pereira EM, Maeda SA, et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2003;11(1):1–8.Google Scholar
  67. 67.
    Reis-Filho JS, Schmitt FC. p63 expression in sarcomatoid/metaplastic carcinomas of the breast. Histopathology. 2003;42(1):94–5.CrossRefGoogle Scholar
  68. 68.
    Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49(1):10–21.CrossRefGoogle Scholar
  69. 69.
    Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2009;117(2):273–80.CrossRefGoogle Scholar
  70. 70.
    Rakha EA, Coimbra ND, Hodi Z, Juneinah E, Ellis IO, Lee AH. Immunoprofile of metaplastic carcinomas of the breast. Histopathology. 2017;70(6):975–85.CrossRefGoogle Scholar
  71. 71.
    Ng CKY, Piscuoglio S, Geyer FC, Burke KA, Pareja F, et al. The landscape of somatic genetic alterations in metaplastic breast carcinomas. Clin Cancer Res. 2017;23(14):3859–70.PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Righi L, Sapino A, Marchiò C, Papotti M, Bussolati G. Neuroendocrine differentiation in breast cancer: established facts and unresolved problems. Semin Diagn Pathol. 2010;27(1):69–76.CrossRefGoogle Scholar
  73. 73.
    Sapino A, Righi L, Cassoni P, Papotti M, Pietribiasi F, Bussolati G. Expression of the neuroendocrine phenotype in carcinomas of the breast. Semin Diagn Pathol. 2000;17(2):127–37.PubMedGoogle Scholar
  74. 74.
    Shin SJ, Delellis RA, Ying L, Rosen PP. Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24(9):1231–8.CrossRefGoogle Scholar
  75. 75.
    Li D, Xiao X, Yang W, Shui R, Tu X, Lu H, Shi D. Secretory breast carcinoma: a clinicopathological and immunophenotypic study of 15 cases with a review of the literature. Mod Pathol. 2012;25(4):567–75.CrossRefGoogle Scholar
  76. 76.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–37.CrossRefGoogle Scholar
  77. 77.
    Collins LC, Schnitt SJ. Papillary lesions of the breast: selected diagnostic and management issues. Histopathology. 2008;52(1):20–9.CrossRefGoogle Scholar
  78. 78.
    Collins LC, Carlo VP, Hwang H, Barry TS, Gown AM, Schnitt SJ. Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol. 2006;30(8):1002–7.CrossRefGoogle Scholar
  79. 79.
    Esposito NN, Dabbs DJ, Bhargava R. Are encapsulated papillary carcinomas of the breast in situ or invasive? A basement membrane study of 27 cases. Am J Clin Pathol. 2009;131(2):228–42.CrossRefGoogle Scholar
  80. 80.
    Mulligan AM, O’Malley FP. Metastatic potential of encapsulated (intracystic) papillary carcinoma of the breast: a report of 2 cases with axillary lymph node micrometastases. Int J Surg Pathol. 2007;15:143–7.CrossRefGoogle Scholar
  81. 81.
    Nassar H, Qureshi H, Adsay NV, Visscher D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol. 2006;30(4):501–7.CrossRefGoogle Scholar
  82. 82.
    Nicolas MM, Wu Y, Middleton LP, Gilcrease MZ. Loss of myoepithelium is variable in solid papillary carcinoma of the breast. Histopathology. 2007;51(5):657–65.CrossRefGoogle Scholar
  83. 83.
    Rakha EA, Badve S, Eusebi V, Reis-Filho JS, Fox SB, Dabbs DJ, et al. Breast lesions of uncertain malignant nature and limited metastatic potential: proposals to improve their recognition and clinical management. Histopathology. 2016;68(1):45–56.PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM. Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res. 2010;12(4):R54.PubMedCentralCrossRefGoogle Scholar
  85. 85.
    Marchiò C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or ‘The strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.CrossRefGoogle Scholar
  86. 86.
    Kulkarni N, Pezzi CM, Greif JM, Suzanne Klimberg V, Bailey L, Korourian S, Zuraek M. Rare breast cancer: 933 adenoid cystic carcinomas from the National Cancer Data Base. Ann Surg Oncol. 2013;20(7):2236–41.CrossRefGoogle Scholar
  87. 87.
    Shin SJ, Rosen PP. Solid variant of mammary adenoid cystic carcinoma with basaloid features: a study of nine cases. Am J Surg Pathol. 2002;26(4):413–20.CrossRefGoogle Scholar
  88. 88.
    Hayes MM, Seidman JD, Ashton MA. Glycogen-rich clear cell carcinoma of the breast. A clinicopathologic study of 21 cases. Am J Surg Pathol. 2002;19(8):904–11.CrossRefGoogle Scholar
  89. 89.
    Kuroda H, Sakamoto G, Ohnisi K, Itoyama S. Clinical and pathological features of glycogen-rich clear cell carcinoma of the breast. Breast Cancer. 2005;12(3):189–95.CrossRefGoogle Scholar
  90. 90.
    Yamauchi H, Woodward WA, Valero V, Alvarez RH, Lucci A, Buchholz TA, et al. Inflammatory breast cancer: what we know and what we need to learn. Oncologist. 2012;17(7):891–9.PubMedCentralCrossRefGoogle Scholar
  91. 91.
    Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sitki Tuzlali
    • 1
    • 2
  • Ekrem Yavuz
    • 2
  1. 1.Tuzlali Private Pathology LaboratoryIstanbulTurkey
  2. 2.Istanbul University, Istanbul Medical Faculty, Department of PathologyIstanbulTurkey

Personalised recommendations