Advertisement

PAPA Syndrome and the Spectrum of PSTPIP1-Associated Inflammatory Diseases

  • Dirk Holzinger
  • Johannes Roth
Chapter

Abstract

Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome was the first described autoinflammatory disease caused by mutations in the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1, also known as CD2BP1) gene. However, in the last years, the spectrum of PSTPIP1-associated inflammatory diseases (PAID) has expanded encompassing PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome and the anecdotal description of other clinical phenotypes.

Besides dysregulation of IL-1ß release from activated PAPA monocytes that requires activation of the NLRP3 inflammasome, PSTPIP1 mutations have an impact on the formation of podosomes and filopodia which might be an additional pathogenic mechanism. The serum concentrations of the endogenous TLR4 agonists myeloid-related proteins (MRP) 8 and 14 are characteristic features of these diseases and might play a central role in the pathogenesis.

Here, we give an overview about the expanding spectrum of autoinflammatory diseases due to mutations in PSTPIP1 and insights into their pathogenesis.

Keywords

Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) PSTPIP1-associated inflammatory diseases (PAID) Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) Myeloid-related proteins (MRP) 8/14 Alarmins 

References

  1. 1.
    Lindor NM, Arsenault TM, Solomon H, Seidman CE, McEvoy MT. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc. 1997;72(7):611–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Wise CA, Bennett LB, Pascual V, Gillum JD, Bowcock AM. Localization of a gene for familial recurrent arthritis. Arthritis Rheum. 2000;43(9):2041–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Yeon HB, Lindor NM, Seidman JG, Seidman CE. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome maps to chromosome 15q. Am J Hum Genet. 2000;66(4):1443–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang H, Reinherz EL. CD2BP1 modulates CD2-dependent T cell activation via linkage to protein tyrosine phosphatase (PTP)-PEST. J Immunol. 2006;176(10):5898–907.PubMedCrossRefGoogle Scholar
  6. 6.
    Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100(23):13501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell. 2007;28(2):214–27.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cortis E, De Benedetti F, Insalaco A, Cioschi S, Muratori F, D'Urbano LE, et al. Abnormal production of tumor necrosis factor (TNF) – alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected]. J Pediatr. 2004;145(6):851–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Edrees AF, Kaplan DL, Abdou NI. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome (PAPA syndrome) associated with hypogammaglobulinemia and elevated serum tumor necrosis factor-alpha levels. J Clin Rheumatol. 2002;8(5):273–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Stichweh DS, Punaro M, Pascual V. Dramatic improvement of pyoderma gangrenosum with infliximab in a patient with PAPA syndrome. Pediatr Dermatol. 2005;22(3):262–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Dierselhuis MP, Frenkel J, Wulffraat NM, Boelens JJ. Anakinra for flares of pyogenic arthritis in PAPA syndrome. Rheumatology (Oxford). 2005;44(3):406–8.CrossRefGoogle Scholar
  12. 12.
    Geusau A, Mothes-Luksch N, Nahavandi H, Pickl WF, Wise CA, Pourpak Z, et al. Identification of a homozygous PSTPIP1 mutation in a patient with a PAPA-like syndrome responding to canakinumab treatment. JAMA Dermatol. 2013;149(2):209–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Holzinger D, Fassl SK, de Jager W, Lohse P, Rohrig UF, Gattorno M, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136(5):1337–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Marzano AV, Trevisan V, Gattorno M, Ceccherini I, De Simone C, Crosti C. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 2013;149(6):762–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang D, Hoing S, Patterson HC, Ahmad UM, Rathinam VA, Rajewsky K, et al. Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T mutant proteins. J Biol Chem. 2013;288(7):4594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Holzinger D, Roth J. Alarming consequences – autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr Opin Rheumatol. 2016;28(5):550–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Fathalla BM, Al-Wahadneh AM, Al-Mutawa M, Kambouris M, El-Shanti H. A novel de novo PSTPIP1 mutation in a boy with pyogenic arthritis, pyoderma gangrenosum, acne (PAPA) syndrome. Clin Exp Rheumatol. 2014;32(6):956–8.PubMedGoogle Scholar
  18. 18.
    Toplak N, Frenkel J, Ozen S, Lachmann HJ, Woo P, Kone-Paut I, et al. An international registry on autoinflammatory diseases: the Eurofever experience. Ann Rheum Dis. 2012;71(7):1177–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Touitou I, Lesage S, McDermott M, Cuisset L, Hoffman H, Dode C, et al. Infevers: an evolving mutation database for auto-inflammatory syndromes. Hum Mutat. 2004;24(3):194–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith EJ, Allantaz F, Bennett L, Zhang D, Gao X, Wood G, et al. Clinical, molecular, and genetic characteristics of PAPA syndrome: a review. Curr Genomics. 2010;11(7):519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–89.PubMedCrossRefGoogle Scholar
  22. 22.
    Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD, et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol. 2011;12(12):1151–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang W, et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A. 2013;110(31):12768–73.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Demidowich AP, Freeman AF, Kuhns DB, Aksentijevich I, Gallin JI, Turner ML, et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum. 2012;64(6):2022–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Klotgen HW, Beltraminelli H, Yawalkar N, van Gijn ME, Holzinger D, Borradori L. The expanding spectrum of clinical phenotypes associated with PSTPIP1 mutations: from PAPA to PAMI syndrome and beyond. Br J Dermatol. 2018;178:982–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindwall E, Singla S, Davis WE, Quinet RJ. Novel PSTPIP1 gene mutation in a patient with pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome. Semin Arthritis Rheum. 2015;45(1):91–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Belelli E, Passarelli C, Pardeo M, Holzinger D, De Benedetti F, Insalaco A. Haematological involvement associated with a mild autoinflammatory phenotype, in two patients carrying the E250K mutation of PSTPIP1. Clin Exp Rheumatol. 2017;35(Suppl 108(6)):113–5.PubMedGoogle Scholar
  28. 28.
    Khatibi K, Heit JJ, Telischak NA, Elbers JM, Do HM. Cerebral vascular findings in PAPA syndrome: cerebral arterial vasculopathy or vasculitis and a posterior cerebral artery dissecting aneurysm. J Neurointerv Surg. 2016;8(8):e29.PubMedCrossRefGoogle Scholar
  29. 29.
    Zeeli T, Padalon-Brauch G, Ellenbogen E, Gat A, Sarig O, Sprecher E. Pyoderma gangrenosum, acne and ulcerative colitis in a patient with a novel mutation in the PSTPIP1 gene. Clin Exp Dermatol. 2015;40(4):367–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Braun-Falco M, Kovnerystyy O, Lohse P, Ruzicka T. Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH)--a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol. 2012;66(3):409–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Calderon-Castrat X, Bancalari-Diaz D, Roman-Curto C, Romo-Melgar A, Amoros-Cerdan D, Alcaraz-Mas LA, et al. PSTPIP1 gene mutation in a pyoderma gangrenosum, acne and suppurative hidradenitis (PASH) syndrome. Br J Dermatol. 2016;175(1):194–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Nesterovitch AB, Hoffman MD, Simon M, Petukhov PA, Tharp MD, Glant TT. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol. 2011;36(8):889–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, et al. PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. J Cell Biol. 1997;138(4):845–60.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Li J, Nishizawa K, An W, Hussey RE, Lialios FE, Salgia R, et al. A cdc15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplasmic domain and regulates CD2-triggered adhesion. EMBO J. 1998;17(24):7320–36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cong F, Spencer S, Cote JF, Wu Y, Tremblay ML, Lasky LA, et al. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol Cell. 2000;6(6):1413–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu Y, Spencer SD, Lasky LA. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J Biol Chem. 1998;273(10):5765–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Tian L, Nelson DL, Stewart DM. Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem. 2000;275(11):7854–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Dawson JC, Legg JA, Machesky LM. Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol. 2006;16(10):493–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S, Lasky LA, et al. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J Cell Biol. 1999;144(5):1019–31.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cote JF, Chung PL, Theberge JF, Halle M, Spencer S, Lasky LA, et al. PSTPIP is a substrate of PTP-PEST and serves as a scaffold guiding PTP-PEST toward a specific dephosphorylation of WASP. J Biol Chem. 2002;277(4):2973–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Baum W, Kirkin V, Fernandez SB, Pick R, Lettau M, Janssen O, et al. Binding of the intracellular Fas ligand (FasL) domain to the adaptor protein PSTPIP results in a cytoplasmic localization of FasL. J Biol Chem. 2005;280(48):40012–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Badour K, Zhang J, Shi F, McGavin MK, Rampersad V, Hardy LA, et al. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity. 2003;18(1):141–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Qian J, Chen W, Lettau M, Podda G, Zornig M, Kabelitz D, et al. Regulation of FasL expression: a SH3 domain containing protein family involved in the lysosomal association of FasL. Cell Signal. 2006;18(8):1327–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Badour K, Zhang J, Shi F, Leng Y, Collins M, Siminovitch KA. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J Exp Med. 2004;199(1):99–112.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cooper KM, Bennin DA, Huttenlocher A. The PCH family member proline-serine-threonine phosphatase-interacting protein 1 targets to the leukocyte uropod and regulates directed cell migration. Mol Biol Cell. 2008;19(8):3180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, et al. Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS One. 2009;4(7):e6147.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–68.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yu JW, Farias A, Hwang I, Fernandes-Alnemri T, Alnemri ES. Ribotoxic stress through p38 mitogen-activated protein kinase activates in vitro the human pyrin inflammasome. J Biol Chem. 2013;288(16):11378–83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ryan JG, Masters SL, Booty MG, Habal N, Alexander JD, Barham BK, et al. Clinical features and functional significance of the P369S/R408Q variant in pyrin, the familial Mediterranean fever protein. Ann Rheum Dis. 2010;69(7):1383–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Omenetti A, Carta S, Caorsi R, Finetti M, Marotto D, Lattanzi B, et al. Disease activity accounts for long-term efficacy of IL-1 blockers in pyogenic sterile arthritis pyoderma gangrenosum and severe acne syndrome. Rheumatology (Oxford). 2016;55(7):1325–35.CrossRefGoogle Scholar
  51. 51.
    Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8):2711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86(3):557–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Gohar F, Orak B, Kallinich T, Jeske M, Lieber M, von Bernuth H, et al. Correlation of secretory activity of neutrophils with genotype in patients with familial Mediterranean fever. Arthritis Rheumatol (Hoboken, NJ). 2016;68(12):3010–22.CrossRefGoogle Scholar
  54. 54.
    Kessel C, Holzinger D, Foell D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol. 2013;147(3):229–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Vogl T, Stratis A, Wixler V, Völler T, Thurainayagam S, Jorch SK, Zenker S, Dreiling A, Chakraborty D, Fröhling M, Paruzel P, Wehmeyer C, Hermann S, Papantonopoulou O, Geyer C, Loser K, Schäfers M, Ludwig S, Stoll M, Leanderson T, Schultze JL, König S, Pap T, Roth J. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128(5):1852–66.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272(14):9496–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104(13):4260–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Foell D, Wittkowski H, Kessel C, Luken A, Weinhage T, Varga G, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. 2013;187(12):1324–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Rubartelli A, Cozzolino F, Talio M, Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J. 1990;9(5):1503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fassl SK, Austermann J, Papantonopoulou O, Riemenschneider M, Xue J, Bertheloot D, et al. Transcriptome assessment reveals a dominant role for TLR4 in the activation of human monocytes by the alarmin MRP8. J Immunol. 2015;194(2):575–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Frosch M, Ahlmann M, Vogl T, Wittkowski H, Wulffraat N, Foell D, et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1beta form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(3):883–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Frosch M, Roth J. New insights in systemic juvenile idiopathic arthritis--from pathophysiology to treatment. Rheumatology (Oxford). 2008;47(2):121–5.CrossRefGoogle Scholar
  64. 64.
    Akkaya-Ulum YZ, Balci-Peynircioglu B, Purali N, Yilmaz E. Pyrin-PSTPIP1 colocalises at the leading edge during cell migration. Cell Biol Int. 2015;39(12):1384–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Cortesio CL, Wernimont SA, Kastner DL, Cooper KM, Huttenlocher A. Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome. Arthritis Rheum. 2010;62(8):2556–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Starnes TW, Bennin DA, Bing X, Eickhoff JC, Grahf DC, Bellak JM, et al. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood. 2014;123(17):2703–14.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sztacho M, Segeletz S, Sanchez-Fernandez MA, Czupalla C, Niehage C, Hoflack B. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts. PLoS One. 2016;11(10):e0164829.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Marcos T, Ruiz-Martin V, de la Puerta ML, Trinidad AG, Rodriguez Mdel C, de la Fuente MA, et al. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J. 2014;281(17):3844–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Tofteland ND, Shaver TS. Clinical efficacy of etanercept for treatment of PAPA syndrome. J Clin Rheumatol. 2010;16(5):244–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161(5):1199–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dirk Holzinger
    • 1
  • Johannes Roth
    • 2
  1. 1.Department of Pediatric Hematology-OncologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Institute of ImmunologyUniversity Hospital MuensterMuensterGermany

Personalised recommendations