Advertisement

Probing Glassiness in Heuslers via Density Functional Theory Calculations

  • P. Entel
  • M. E. GrunerEmail author
  • M. Acet
  • A. Hucht
  • A. Çakır
  • R. Arróyave
  • I. Karaman
  • T. C. Duong
  • A. Talapatra
  • N. M. Bruno
  • D. Salas
  • S. Mankovsky
  • L. Sandratskii
  • T. Gottschall
  • O. Gutfleisch
  • S. Sahoo
  • S. Fähler
  • P. Lázpita
  • V. A. Chernenko
  • J. M. Barandiaran
  • V. D. Buchelnikov
  • V. V. Sokolovskiy
  • T. Lookman
  • X. Ren
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 275)

Abstract

Heusler compounds and alloys form a unique class of intermetallic systems with functional properties interfering with basic questions of fundamental aspects of materials science. Among the functional properties, the magnetic shape memory behavior (Planes et al., J Phys: Condens Matter 21:233201 (29 pp), 2009) and the ferrocaloric effects like the inverse magnetocaloric effect which is associated with the first order magnetostructural transformation with a jump-like change of the magnetization with lowering of temperature (Acet et al., Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Bushow KHJ (ed) Handbook of magnetic materials, vol 19. North-Holland, Amsterdam, pp 231–289, 2011) have been intensively investigated in various reviews. Important references can be found in Acet et al. (Magnetic-field-induced effects in martensitc Heusler-based magnetic shape memory alloys. In: Bushow KHJ (ed) Handbook of magnetic materials, vol 19. North-Holland, Amsterdam, pp 231–289, 2011). Besides magnetocaloric effects, other ferroic cooling mechanisms of Heuslers (electrocaloric, barocaloric, and elastocaloric ones) have recently been discussed by Xavier Moya et al. (Nat Mater 13:439–450, 2014). A discussion of caloric effects in ferroic materials including a brief discussion of the importance of correlating time and length scales can be found in Fähler et al. (Adv Eng Mater 14:10–19, 2012). In the present article, we emphasize this item further by showing that, in particular, the physics at different time scales leads to markedly different properties of the Heusler materials. “Rapidly quenched” alloys behave differently from “less rapidly quenched” alloys. In the latter case, the so-called magnetostructural transformation may vanish altogether because of segregation of the alloys into the stoichiometric L21 Heusler phase and L10 Ni-Mn occurs. We argue that this tendency for segregation is at the origin of glassiness in Heuslers.

Notes

Acknowledgements

This work was supported by the DFG priority programme SPP 1599.

References

  1. 1.
    A. Çakır, L. Righi, F. Albertini, M. Acet, M. Farle, Intermartensitic transitions and phase stability in Ni50Mn50−xSnx Heusler alloys. Acta Mater. 99, 140 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, C. Huang, J. Gso, S. Yang, X. Ding, X. Song, X. Ren, Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. Appl. Phys. Lett. 101, 101913 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsula, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Strain glass in ferroeleastic systems: premartensitic tweed versus strain glass. Philos. Mag. 90, 141 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Çakır, M. Acet, M. Farle, Shell-ferromagnetism of nano-Heuslers generated by segregation under magnetic field. Sci. Rep. 6, 28931 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    O. Mesheriakova, S. Chadow, A.K. Nayak, U.K. Rößler, J. Kübler, G. André, A.A. Tsirlin, J. Kiss, S. Hausdorf, A. Kalache, W. Schnelle, M. Nicklas, C. Felser, Large noncollineraity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113, 0897203 (2014)Google Scholar
  6. 6.
    S. Singh, S.W. D’Souza, J. Nayak, E. Suard, L. Chapon, A. Senyshyn, V. Petricek, Y. Skourskim, M. Nicklas, C. Felser, S. Chadov, Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa. Nat. Commun. 7, 12671 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    C. Phatak, O. Heinonen, M. De Graef, A. Petford-Long, Nanoscale Skyrmions in a nonchiral metallic multiferroic: Ni2MnGa. NanoLett. 16, 4141 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. 49, 295 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    P. Entel, A. Dannenberg, M. Siewert, H.C. Herper, M.E. Gruner, V.D. Buchelnikov, V.A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles caculations. Mater. Sci. Forum 684, 1 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Entel, V.D. Buchelnkov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, E.F. Wassermann, Modelling the phase diagram of magnetic shape memory alloys. J. Phys. D: Appl. Phys. 39, 865 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa, Appl. Phys. Lett. 69, 1966 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 77, 886 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    O. Söderberg, Y. Ge, A. Sozinov, S.-P. Hannula, V.K. Lindroos, Recent breakthrough development of the magnetic shape memory effect in Ni-Mn-Ga alloys. Smart Mater. Struct. 14, S223 (2005)CrossRefGoogle Scholar
  14. 14.
    B. Kiefer, D.C. Lagoudas, Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85, 4289 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    I. Karaman, B. Basaran, H.E. Karaca, A.I. Karsilayan, Y.I. Chumlyakov, Energy harvesting using martensite variant reorientation mechanism in NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kaufmann, U.K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fähler, Adaptive modulations of martensites. Phys. Rev. Lett. 104, 145702 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Niemann, U.K. Rößler, M.E. Gruner, O. Heczko, L. Schultz, S. Fähler. The role of adaptive martensite in magnetic shape memory alloys. Adv. Eng. Mater. 14, 562 (2012)CrossRefGoogle Scholar
  18. 18.
    J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, P. Lazpitza, J. Gutierrez, I. Orue, Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. Appl. Phys. Lett. 102, 071904 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, J. Gutierrez, P. Lazpita, Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy. J. Phys.: Condens. Matter. 25, 484005 (2013)Google Scholar
  20. 20.
    P.J. Stonaha, M.E. Manley, N.M. Bruno, I. Karaman, R. Arróyave, N. Singh, D.L. Abernathy, S. Chi, Lattice vibrations boost demagnetization entropy in a shape-memory alloy. Phys. Rev. B 92, 140406(R) (2015)Google Scholar
  21. 21.
    H. Ebert et al., The Munich SPR-KKR package, version 6.3. http://ebert.cup.uni-muenchen.de/SPRKKR. H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74, 096501 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn , Sb). Phys. Rev. B 78, 184427 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki, T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys. J. Phys. D: Appl. Phys. 44, 064012 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottsschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Fähler, P. Entel, First-pinciples calculation of the instability leading to giant inverse magnetocaloric effects. Phys. Rev. B 89, 184403 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    T. Castán, E. Vives, P. Lindgård, Modeling premartensitic effects in Ni2MnGa: a mean-field and Monte Carlo simulation study. Phys. Rev. B 60, 7071 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Sokolovskiy, M.A. Zagrebin, V.D. Buchelnikov, Novel achievements in the research field of multifunctional shape memory Ni-Mn-In and Ni-Mn-In-Z Heusler alloys. Mater. Sci. Found. 81/82, 38 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Singh, R. Arróyave, P. Entel, Monte Carlo simulations of Spin-glass effects in Ni-Mn-In Heusler alloys (to be published)Google Scholar
  28. 28.
    V.V. Sokolovskiy, P. Entel, V.D. Buchelnikov, M.E. Gruner, Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies. Phys. Rev. B 91, 220409(R) (2015)Google Scholar
  29. 29.
    Y.M. Jin, A.G. Khachaturyan, Atomic density function theory and modeling of microstructure evolution at the atomic scale. J. Appl. Phys. 100, 013519 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    A.G. Khachaturyan, Theory of Structural Transformation in Solids (Dober Publications, New York, 1983)Google Scholar
  31. 31.
    S. Stamenković, The unified model description of order disorder and displacive structural phase transitions. Condens. Matter. Phys. 1, 257 (1998)CrossRefGoogle Scholar
  32. 32.
    J.A. Krumhansl, J.R. Schrieffer, Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transition. Phys. Rev. B 11, 3535 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alarcos, Dependence of the relative stability between autenite and martensite phases on the atomic order in a Ni-Mn-In metamagnetic shape memory alloy. J. Alloys Compd. 536s, S5308 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Salazar Mejıa, A.K. Nayak, J.A. Schiemer, C. Felser, M. Nicklas, M.A. Carpenter, Strain behavior and lattice dynamics in Ni50Mn35In15. J. Phys.: Condens. Matter. 27, 415402 (2015)Google Scholar
  35. 35.
    A. Planes, L. Mañosa, M. Acet, Magnetovolume effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter. 21, 233201 (2009)ADSGoogle Scholar
  36. 36.
    M. Acet, L. Mañosa, A. Planes, Magnetic-field-induced effects in martensitc Heusler-based magnetic shape memory alloys, in Handbook of Magnetic Materials, vol. 19, ed. by K.H.J. Bushow (North-Holland, Amsterdam, 2011), pp. 231–289Google Scholar
  37. 37.
    D.Y. Cong, S. Roth, L. Schultz, Magnetic properties and structural transfroations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater. 60, 5335 (2012)CrossRefGoogle Scholar
  38. 38.
    D.Y. Cong, S. Roth, Y.D. Wang, Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys. Phys. Status Solidi 251, 2126 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    R.Y. Umetsu, R. Kainuma, Y. Amako, Y, Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, A. Oikawa, K. Ishida, Mössbauer study on martensitic phase in Ni50Mn\(_{36.5}^{57}\)Fe0.5Sn13 metamagnetic shape memory alloy. Appl. Phys. Lett. 93, 042509 (2008)Google Scholar
  40. 40.
    V.V. Khovaylo, T. Kanomata, T. Kanata, M. Nakashima, Y. Amako, R. Kainuma, R.Y. Umetsu, H. Morito, H. Miki, Magnetic properties of Ni50Mn34.8In15.2 probed by Mössbauer spectroscopy. Phys. Rev. B 80, 144409 (2009)Google Scholar
  41. 41.
    S. Chatterjee, S. Giri, S.K. De, S. Majumdar, Reentrant spin-glass state in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B 79, 092410 (2009)Google Scholar
  42. 42.
    J.I. Pérez-Landazabal, V. Recarte, V. Sanchez-Alarcos, C. Gómez-Polo, E. Cesari, Magnetic properties of the martensitic phase in Ni-Mn-In-Co metamagnetic shape memory alloys. Appl. Phys. Lett. 102, 101908 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. Hoch, V. Shrivastava, R.D. James, S. El-Khatib, C. Leighton, Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy. Phys. Rev. B 91, 214421 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, T. Kanomata, Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    X. Xu, W. Ito, R.Y. Umetsu, K. Koyama, R. Kainuma, K. Ishida, Kinetic arrest of martenstic transformation in Ni33.0Co13.4Mn39.7Ga13.9 metamagnetic shape memory alloy. Mater. Trans. JIM 51, 469 (2010)Google Scholar
  46. 46.
    A. Lakhani, S. Dash, A. Banerjee, P. Chaddah, X. Chen, R.V. Ramanjuan, Tuning the austenite and martensite phase fraction in ferromagnetic shape memory alloy ribbons of Ni45Co5Mn38Sn12. Appl. Phys. Lett. 99, 242503 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    R.Y. Umetsu, K. Ito, W. Ito, K. Koyama, T. Kanomata, K. Ishida, R. Kainuma, Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagentic shape memory alloy. J. Alloys Comp. 509, 1389 (2011)CrossRefGoogle Scholar
  48. 48.
    X. Xu, W. Ito, M. Tokunaga, R.Y. Umetsu, R. Kainuma, K. Ishida, Kinetic arrest of martensitic transformation in NiCoMnAl metamagnetic shape memory alloy. Mater. Trans. JIM 51, 1357 (2010)CrossRefGoogle Scholar
  49. 49.
    X. Xu, W. Ito, M. Tokunaga, T. Kihara, K. Oka, R.Y. Umetsu, T. Kanomata, R. Kainuma, The thermal transformation arrest phenomenon in NiCoMnAl Heusler alloys. Metals 3, 298 (2013)CrossRefGoogle Scholar
  50. 50.
    S.K. Ghatak, D.K. Ray, Structural and magnetic instabilities in a twofold-degenerate band. Phys. Rev. B 31, 3064 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    D.K. Ray, J.P. Jordan, Elastic and magnetic interactions in a narrow twofold-degenerate band. Phys. Rev. B 33, 5021 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    J.L. Shen, D.W. Zhao, G.K. Li, L. Ma, L.Y. Jia, C.M. Zhen, D.L. Hou, Kinetic arrest and de-arrest in Mn50Ni36Sn9Co5 ferromagnetic shape memory alloy. Phys. Status Solidi B 253, 1923 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    V.K. Sharma, M.K. Chattopadhyay, S.K. Roy, Kinetic arrest of the first-order austenite to martensite phase transition in Ni50Mn34In16: DC magnetization studies. Phys. Rev. B 76, 140401(R) (2007)Google Scholar
  54. 54.
    J.L. Sánchez Llamazares, B. Hernando, J.J. Suñol, C. Facia, C.A. Ross, Kinetic arrest of direct and reverse martensitic transfromation and exchange bias effect in Mn49.5Ni40.4In10.1 melt spun ribbons. J. Appl. Phys. 107, 09A956 (2010)Google Scholar
  55. 55.
    J.A. Monroe, J.E. Raymond, X. Xu, N. Nagasako, R. Kainuma, Y.I. Chumlyakov, R. Arróyave, I. Karaman, Multiple ferroic glasses via ordering. Acta Mater. 101, 107 (2015)CrossRefGoogle Scholar
  56. 56.
    F.H. Stillinger, P.G. Debenedetti, T.M. Truskett, The Kauzmann paradox revisited. J. Phys. Chem. B 105, 11809 (2001)CrossRefGoogle Scholar
  57. 57.
    C. Segui, E. Cesari, P. Lázpita, Magneitc properties of martensite in metamagnetic Ni-Co-Mn-Ga alloys. J. Phys. D: Appl. Phys. 49, 165007 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Origin of the Invar effect in iron-nickel alloys. Nature 400, 46 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    P. Lloveras, T. Castán, M. Porta, A. Saxena, A. Planes, Mesoscopic modelling of strain glass, in Frustrated Materials and Ferroic Glasses, Springer Series in Materials Science 275 (Springer, Cham, 2018)Google Scholar
  60. 60.
    A. Grünebohm, H.C. Herper, P. Entel, On the rich magnetic phase diagram of (Ni, Co)-Mn-Sn Heusler alloys. J. Phys. D: Appl. Phys. 49, 395001 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Mankovsky, unpublished dataGoogle Scholar
  62. 62.
    L. Sandratskii, unpublished dataGoogle Scholar
  63. 63.
    D.L. Schlagel, R.W. McCallum, T.A. Lograsso, Influence of solidification microstructure on the magnetic proerties of Ni-Mn-Sn Heusler alloys. J. Alloys Comp. 463, 38 (2008)CrossRefGoogle Scholar
  64. 64.
    W.M. Yuhasz, D.L. Schlagel, Q. Xing, K.W. Dennis, R.W. McCallum, T.A. Lograsso, Influence of annealing and phase decomposition on the magnetostructural transitions in Ni50Mn39Sn11. J. Appl. Phys. 105, 07A921 (2009)Google Scholar
  65. 65.
    W.M. Yuhasz, D.L. Schlagel, Q. Xing, R.W. Callum, T.A. Lograsso, Metastability of ferromagnetc Ni-Mn-Sn alloys. J. Alloys Comp. 492, 681 (2010)CrossRefGoogle Scholar
  66. 66.
    E. Cesari, J. Font, J. Muntashell, P. Ochin, J. Pons, R. Santamarta, Thermal stability of high-temperature Ni-Mn-Ga alloys. Scr. Mater. 58, 259 (2008)CrossRefGoogle Scholar
  67. 67.
    J.R. Aseguinoaza, V. Golub, O.Y. Salyuk, B. Muntifering, W.B. Knowlton, P. Müllner, J.M. Barandiaran, V.A. Chernenko, Self-patterning of epitaxial Ni-Mn-Ga/MgO(001) thin films. Acta Mater. 111, 163 (2016)Google Scholar
  68. 68.
    D. Merida, J.A. Garcia, E. Apiãniz, F. Plazaola, V. Sanchez-Alarcos, J. Pérez Landazábal, V. Recarte, Positron annihilation spectroscopy study of Ni-Mn-Ga ferromagnetic shape memory alloys. Phys. Proc. 35, 57 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    D. Merida, J.A. Garćia, V. Sánchez-Alarcos, J.I. Perez-Landazábal, V. Recarte, F. Plazaola, Characterization and Modelling of vacancy dynamics in Ni-Mn-Ga ferromagnetic shape memory alloys. J. Alloys Comp. 639, 180 (2015)CrossRefGoogle Scholar
  70. 70.
    A.M. Pérez-Sierra, J. Pons, R. Santamarta, P. Vernaut, P. Ochin, Solidification process and effect of thermal treatments on Ni-Co-Mn-Sn metamagentic shape memory alloys. Acta Mater. 93, 164 (2015)CrossRefGoogle Scholar
  71. 71.
    V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, I. Lucia, J. Vélez, J.A. Rodríguez-Velamazán, Effect of high temperatue quenching on the magnetostructural transformations and long-range atomic order of Ni-Mn-Sn adn Ni-Mn-Sb metamagetic shape memory alloys. Acta Mater. 61, 4676 (2013)CrossRefGoogle Scholar
  72. 72.
    M.K. Ray, K.Bagani, S. Banerjee, Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4−xSn0.6 alloy. J. Alloys Comp. 600, 55 (2014)Google Scholar
  73. 73.
    P. Entel, V.V. Sokolovskiy, V.D. Buchelnikov, M. Ogura, M.E. Gruner, A. Grünebohm, D. Comtessse, H, Akai, The metamagnetic behavior and giant inverse magnetocaloric effect in Ni-Co-Mn-(Ga, In, Sn) Heusler alloys. J. Magn. Magn. Mater. 385, 193 (2015)ADSCrossRefGoogle Scholar
  74. 74.
    A. Çakır, M. Acet, Non-volatile high-temperature shell-magnetic pinning of Ni-Mn-Sn Heusler precipitates obtained by decomposition under magnetic field. J. Magn. Magn. Mater. 448, 13 (2018)ADSCrossRefGoogle Scholar
  75. 75.
    T. Krenke, A. Çakır, F. Scheibel, M. Acet, M. Farle, Magnetic proximity effect and shell-ferromagnetism in metastable Ni45Mn45Ga5. J. Appl. Phys. 120, 243904 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    A. Çakır, M. Acet, Shell ferromagnetism in Ni-Mn based Heuslers in view of ductile Ni-Mn-Al. AIP Adv. 7, 056424 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    T. Miyamoto, W. Ito, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Ishida, Phase stability and magnetic properties of Ni50Mn50−xInx Heusler type alloys. Scr. Mater. 62, 151 (2010)CrossRefGoogle Scholar
  78. 78.
    T. Miyamoto, W. Ito, R.Y. Umetsu, T. Kanomata, K. Ishida, R. Kainuma, Influence of annealing conditions on magnetic properties of Ni50Mn50−xInx Heusler type alloys. Mater. Trans. JIM 52, 1836 (2011)CrossRefGoogle Scholar
  79. 79.
    R. Kainuma, F. Gejima, Y, Sutou, I. Ohnuma, K. Aoki, K. Ishida, Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Heusler shape memory alloys. Mater. Trans. JIM 41, 943 (2000)Google Scholar
  80. 80.
    R.W. Overholser, M. Wuttig, D.A. Neumann, Chemical ordering in Ni-Mn-Ga Heusler alloys. Scr. Mater. 40, 1095 (1999)CrossRefGoogle Scholar
  81. 81.
    W.L. Bragg, E.J. Williams, The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699 (1934)ADSCrossRefGoogle Scholar
  82. 82.
    J.S. Kaspar, J.S. Kouvel, The antiferromagnetic structure of NiMn. J. Phys. Chem. Solids 11, 231 (1959)ADSCrossRefGoogle Scholar
  83. 83.
    M. Siewert, Electronic, magnetic and thermodynamic properties of magnetic shape memory alloys from first principles. PhD thesis, University of Duisburg-Essen, 2012Google Scholar
  84. 84.
    E. Krén, E. Nagy, I. Nagy, L. Pál, P. Szabó, Structures and phase transformations in the Ni-Mn system near equiatomic concentration. J. Phys. Chem. Solids 29, 101 (1968)ADSCrossRefGoogle Scholar
  85. 85.
    N.M. Bruno, S. Wang, I. Karaman, Y.I. Chumlyakov, Reversible martensitic transformation under low magnetic fields in magnetic shape memory alloys. Sci. Rep. 7, 40434 (2017)ADSCrossRefGoogle Scholar
  86. 86.
    X. Moya, S. Kar-Narayan, N.D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    S. Fähler, U. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, K. Albe, Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012)CrossRefGoogle Scholar
  88. 88.
    P. Entel, M.E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T.C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V.A. Chernenko, J.M. Barandiaran, V.V. Sokolovskiy, V.D. Buchelnikov, Probing Structural and Magnetic Instabilities and Hysteresis in Heuslers by Density Functional Theory Calculations. Phys. Status Solidi B 255, 1700296 (2018).  https://doi.org/10.1002/pssb.201700296 ADSCrossRefGoogle Scholar
  89. 89.
    M.E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U.K. Rössler, K. Nielsch, S. Fähler, Modulations in martensitic Heusler alloys originate from nanotwin ordering. Sci. Rep. 8, 8489 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • P. Entel
    • 1
  • M. E. Gruner
    • 1
    Email author
  • M. Acet
    • 1
  • A. Hucht
    • 1
  • A. Çakır
    • 2
  • R. Arróyave
    • 3
  • I. Karaman
    • 3
  • T. C. Duong
    • 3
  • A. Talapatra
    • 3
  • N. M. Bruno
    • 3
  • D. Salas
    • 3
  • S. Mankovsky
    • 4
  • L. Sandratskii
    • 5
  • T. Gottschall
    • 6
  • O. Gutfleisch
    • 6
  • S. Sahoo
    • 7
  • S. Fähler
    • 8
  • P. Lázpita
    • 9
  • V. A. Chernenko
    • 9
  • J. M. Barandiaran
    • 9
  • V. D. Buchelnikov
    • 1
    • 10
  • V. V. Sokolovskiy
    • 1
    • 10
  • T. Lookman
    • 1
    • 11
  • X. Ren
    • 1
    • 2
    • 3
    • 12
    • 13
  1. 1.Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Muğla ÜniversitesiMetalurji ve Malzeme Mühendisliği BölümüMuğlaTurkey
  3. 3.Department of Materials Science & EngineeringA&M UniversityCollege StationUSA
  4. 4.Department ChemieLudwig-Maximilian-University MunichMunichGermany
  5. 5.Max-Planck-Institut für MikrostrukturphysikHalleGermany
  6. 6.Technical University DarmstadtInstitute of Materials ScienceDarmstadtGermany
  7. 7.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  8. 8.IFW DresdenDresdenGermany
  9. 9.BCMaterials and Department of Electricity and Electronics, University of Basque Country (UPV/EHU)BilbaoSpain
  10. 10.Condensed Matter Physics DepartmentChelyabinsk State UniversityChelyabinskRussia
  11. 11.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  12. 12.Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behaviour of MaterialsXi’an Jiaotong UniversityXi’anChina
  13. 13.Center for Functional MaterialsNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations